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Abstract 

In this thesis, I provide quantitative descriptions of toothed whale 
echolocation and foraging behavior, including assessment of the effects of noise 
on foraging behavior and the potential influence of ocean acoustic propagation 
conditions on biosonar detection ranges and whale noise exposure.   In addition 
to presenting some novel basic science findings, the case studies presented in 
this thesis have implications for future work and for management. 

In Chapter 2, I describe the application of a modified version of the Dtag to 
studies of harbor porpoise echolocation behavior. The study results indicate how 
porpoises vary the rate and level of their echolocation clicks during prey capture 
events; detail the differences in echolocation behavior between different animals 
and in response to differences in prey fish; and show that, unlike bats, porpoises 
continue their echolocation buzz after the moment of prey capture. 

Chapters 3-4 provide case studies that emphasize the importance of 
applying realistic models of ocean acoustic propagation in marine mammal 
studies. These chapters illustrate that, although using geometric spreading 
approximations to predict communication/target detection ranges or noise 
exposure levels is appropriate in some cases, it can result in large errors in other 
cases, particularly in situations where refraction in the water column or multi-path 
acoustic propagation are significant. 

Finally, in Chapter 5, I describe two methods for statistical analysis of 
whale behavior data, the rotation test and a semi-Markov chain model. I apply 
those methods to test for changes in sperm whale foraging behavior in response 
to airgun noise exposure. Test results indicate that, despite the low-level 
exposures experienced by the whales in the study, some (but not all) of them 
reduced their buzz production rates and altered other foraging behavior 
parameters in response to the airgun exposure. 

Thesis Supervisor:  Peter L. Tyack 
Title: Senior Scientist, Woods Hole Oceanographic Institution Biology 
Department 
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Chapter 1. Introduction 

1.1 Thesis Objectives and Chapter 1 Overview 

The goal of my thesis research has been to provide quantitative 

descriptions of toothed whale echolocation and foraging behavior (Chapters 2 

and 5), including assessment of the effects of noise on foraging behavior 

(Chapter 5) and the potential influence of ocean acoustic propagation conditions 

on biosonar detection ranges (Chapter 3) and whale noise exposure (Chapter 4). 

I have focused on two study species, the harbor porpoise (Phocoena phocoena, 

Chapters 2-3) and the sperm whale (Physeter macrocephalus, Chapters 4-5). 

The following sections present background information relevant to the 

research presented in the rest of the thesis, beginning with a review of previous 

research on the use of echolocation by foraging animals. This review is followed 

by brief discussions of several issues that deserve consideration in studies of 

whale foraging behavior: effects of human-generated noise on behavior, 

implications of ocean sound propagation conditions for behavior, and quantitative 

analysis techniques appropriate for behavior data. Finally, this introductory 

chapter concludes with a brief outline of the thesis. 

1.2 Echolocation by Animals 

1.2.1 General Overview of Animal Echolocation 

Animal echolocation involves the production of acoustic signals and use of 

the returning echoes to obtain information about the environment. Echolocation, 

or biosonar, has been described in various taxa including bats, whales, and birds 

(Griffin, 1958; Thomas et a/., 2002). As early as the 18th century, Italian 

scientists Spallanzani and Jurine observed that while blinded bats could fly and 

navigate normally, deafened bats or bats whose ears had been plugged were 

apparently disoriented and often collided with obstacles (Griffin, 2001). Around 

the mid-20th century, researchers demonstrated that bats emit ultrasonic 

vocalizations and use the resulting echoes to sense their environment via 



echolocation (Griffin, 1958; Griffin, 2001). They carried out experiments that 

demonstrated use of echolocation for navigation and obstacle avoidance by 

showing that echolocation was required for captive bats to navigate successfully 

through a maze of wires (reviewed in Novick, 1973). Subsequently, field 

observations of a correlation between echolocation click emission rates and prey 

capture events suggested a role for echolocation in prey detection and 

localization during foraging, a hypothesis later confirmed and elaborated by 

laboratory and field experiments (for example, Griffin, 1958; Griffin etal., 1960; 

Novick, 1973; Simmons etal., 1979; Griffin, 2001). 

Echolocation has also been described in several cave-dwelling bird taxa, 

which use echolocation mainly for navigation in dark caves: oilbirds Steatornis 

caripensis (Konishi and Knudsen, 1979) and cave swiftlets of genera 

Aerodramus, Collocalia and Hydrochous (reviewed in Price et al., 2005). The 

birds all echolocate at low frequencies (within the range of human hearing, -2-10 

kHz) presumed to be unsuitable for detection of their small insect prey (Griffin, 

1954; Konishi and Knudsen, 1979; Price etal., 2005).  Unlike most bats, the 

birds seem to use echolocation only for navigation and obstacle avoidance. 

There is no evidence that they use echolocation to find or capture prey, but 

captive oilbirds with plugged ears collided with walls during flight in a dark room 

(Griffin, 1954). 

A few species of odontocetes (toothed whales) have been shown 

experimentally to use echolocation for navigation or for prey detection and 

capture, and most other odontocetes produce sounds potentially useful for 

echolocation (Evans, 1973; Au, 1993; Reynolds and Rommel, 1999). Early 

demonstrations of echolocation ability in cetaceans included the abilities of 

Amazon River dolphins {Inia geoffrensis) and bottlenose dolphins (Tursiops 

truncatus) to detect and discriminate between pairs of targets while blindfolded or 

in the dark; the animals produced broadband clicks as they performed the tasks 
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(Norris, 1969; Evans, 1973). Those experiments suggested a possible role for 

echolocation in prey detection and selection. The target detection and 

discrimination abilities of captive dolphins and harbor porpoises (Phocoena 

phocoena) were later described in much greater detail (Au, 1993; Au et ai, 1999; 

Kastelein era/., 1999). In addition, porpoises, like bats, have been shown to be 

able to navigate through mazes of thin wires with no or few collisions, again 

suggesting a role for echolocation in navigation and obstacle avoidance (Evans, 

1973). More recently, Verfuss and colleagues (2005) further described captive 

porpoise click emission rates during navigation; their data indicate that porpoises 

use specific landmarks for orientation, and provide more evidence that porpoises 

use echolocation for navigation as well as foraging. 

Until recently, the difficulties of observing wild whales underwater or 

keeping large whales in captivity for controlled experimentation have limited 

detailed studies of whale echolocation to a few species of dolphin and porpoise 

that have been trained and studied in captivity (mainly the bottlenose dolphin, 

Tursiops truncatus, but also to a lesser extent the harbor porpoise (Phocoena 

phocoena) and other species (Au, 1993)). Current research using digital archival 

tags (Burgess et a/., 1998; Madsen et a/., 2002; Johnson and Tyack, 2003) to 

record marine mammal movements concurrent with audio recordings have 

provided insight into the echolocation and foraging behavior of larger whales like 

sperm whales Physeter macrocephalus (Miller er a/., 2004a) and beaked whales 

Mesoplodon densirostris and Ziphius cavirostris (Madsen et ai, 2005b; Zimmer 

et ai, 2005a). Such work provides data and motivation for comparative studies 

of echolocation, including intraspecific comparisons of wild and captive animals 

and interspecific comparisons of whales and other echolocating species. 

1.2.2 Prey Responses to Echolocation Signals 

The co-evolution of predator echolocation signals and prey hearing and 

avoidance strategies has been well described for bats and their prey (Miller and 
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Surlykke, 2001; Denzinger et a/., 2004; Rydell, 2004; Tougaard etal., 2004). 

There is evidence that some fishes on which toothed whales prey can detect 

ultrasound (cod Gadus morhua, when conditioned: Astrup and Mohl, 1993; 

American shad Alosa sapidissima: Mann et ai, 1998; gulf menhaden Brevoortia 

patronus: Mann etal., 2001).  In addition, herring (Clupea harengus) and shad 

(Alosa sp.) show behavioral responses to broadband clicks that are acoustically 

similar to some odontocete echolocation signals (herring: Wilson and Dill, 2002; 

shad: Wilson era/., 2008). However, similar responses have not been observed 

in the squid Loligo pealeii or in unconditioned cod (squid: Wilson et ai, 2007; 

cod: Schack et ai, 2008). The fact that some fishes do show behavioral 

responses to ultrasonic clicks, combined with the observation that bottlenose 

dolphins regularly use passive listening rather than echolocation in prey detection 

(Gannon et ai, 2005), suggest that predator-prey co-evolution similar to that 

observed in bats and insects may be occurring between toothed whales and their 

prey. 

1.2.3 Bat Biosonar: Echolocation Phases & Niche Adaptation 

Of all taxa that employ echolocation, bats are perhaps the best studied, 

since they can be maintained in captivity, trained to perform behavioral 

experiments, and subjected to neurophysiological testing. Free-ranging bats 

have also been studied in the wild in some cases. 

Echolocation by most foraging bats consists of several distinct phases: 

first, a search phase consisting of regularly-spaced echolocation signals; next, an 

approach phase, in which the bat focuses its attention on one prey target and 

begins to approach it; then, a terminal phase, during which echolocation signals 

(whose acoustic characteristics often differ from the search signals) are emitted 

at a faster, increasing repetition rate, ending sometimes with prey capture 

(Schnitzler and Kalko, 2001).  During the terminal phase, acoustic characteristics 

of the echolocation signals are specialized for precise target localization and 
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range determination, and the more closely-spaced cries provide more frequent 

updates of prey location. 

Comparative studies of echolocating bat species have revealed that bats 

employ several echolocation signal types and strategies, corresponding to the 

environments in which they typically forage. Bats foraging for flying insects in 

open space typically use relatively long, narrowband, lower-frequency 

echolocation signals, which researchers hypothesize are optimized to detect 

targets at maximum ranges and to distinguish insects' fluttering wings from other 

airborne targets (Schnitzler and Kalko, 2001). In contrast, bats foraging in 

background-cluttered habitats such as forest edge environments often use a 

combination of shallowly-modulated narrowband signals (constant-frequency or 

CF signals) and frequency-modulated (FM) signals that cover a broader 

bandwidth (Schnitzler and Kalko, 2001). The CF signals are often considered 

optimal for prey detection, while FM signals are thought to be optimal for target 

localization and characterization (Simmons, 1974; Schnitzler and Kalko, 2001). 

Bats foraging for flying insects close to vegetation or in other highly cluttered 

environments use a third class of echolocation strategies. They tend to use 

longer duration, higher-frequency narrowband (CF) signals, and they employ 

Doppler-shift compensation of the transmitted signal to maintain constant- 

frequency echoes from moving prey. The Doppler shift for moving prey also 

means prey echoes and clutter echoes generally have different frequencies that 

are perceptually distinguishable by the bats, allowing bats to distinguish targets 

from clutter (Schnitzler and Kalko, 2001). The echolocation signals of many bats 

that forage in highly cluttered environments also include an FM component, 

which creates echoes useful for precise target localization but potentially masked 

by clutter echoes (Simmons, 1974; Schnitzler and Kalko, 2001).   Finally, bats 

foraging for stationary prey in highly cluttered environments tend to use shorter 

signals, FM over a relatively broad bandwidth, often emitted at low sound 

pressure levels to minimize echoes from clutter. They use their echolocation to 
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navigate and may also use it to detect insect targets, if the prey have echo 

characteristics unique enough to distinguish them from background objects 

(Schnitzler and Kalko, 2001). 

1.2.4 Toothed Whale Biosonar: Echolocation Phases & Signal Diversity 

A sequence of events analogous to that described for bats has been 

recorded from echolocating narwhals Monodon monoceros (Miller et al., 1995), 

sperm whales (Miller et al., 2004a), and beaked whales (Johnson et al., 2004; 

Madsen et al., 2005b; Johnson et al., 2008), although it has not been 

characterized as thoroughly in relation to prey approach and capture. All toothed 

whale species studied do emit regularly spaced clicks, thought to function in 

echolocation as does the search phase of bat echolocation, and they also 

produce terminal buzzes, as bats do (Miller et al., 1995; Madsen er al., 2002; 

Johnson et al., 2004; Miller et al., 2004a; Madsen et al., 2005b). 

Various types of echolocation signals have been recorded from toothed 

whales. Examples include the lower-frequency, broadband, multi-pulsed clicks of 

sperm whales (Zimmer et al., 2005b), the high-frequency, broadband, impulsive 

clicks of bottlenose dolphins (Au et al., 1974), the high-frequency, frequency- 

modulated clicks of Cuvier's beaked whales Ziphius cavirostris (Zimmer et al., 

2005a), and the very high-frequency, narrowband clicks of porpoises (Au er al., 

1999). Researchers have noted some connections between the ecological 

niches of cetaceans and their echolocation signals; for example, small near- 

shore and riverine species that hunt small prey in acoustically cluttered habitats 

tend to use higher-frequency (>100kHz), more narrow-band echolocation signals, 

while larger offshore species hunt larger prey in less cluttered habitats and use 

lower-frequency, broadband signals (Ketten, 2000).  However, exceptions to this 

pattern exist; for example, pygmy sperm whales Kogia breviceps, which forage in 

deeper waters for squid, also produce narrowband echolocation signals centered 

at about 130 kHz (Madsen er al., 2005a). 
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Rather than attempting to describe and explain the differences between 

echolocation signal characteristics between odontocete species, many studies to 

date have assumed a very simple model of whale sonar source/receiver 

characteristics. According to that model, an animal emits an impulse-like click 

and then processes returning echoes as an energy detector with an integration 

time of a few hundred microseconds (Au, 1993). The variation in click 

characteristics for different species, along with the variation in their habitats, 

suggests that this model may not fully describe echolocation of all toothed 

whales. As more data on the echolocation signals and the detailed foraging 

strategies of various whale species emerge, they can be integrated with 

information on preferred prey types and the acoustic environment in which 

animals forage. Such synthesis should provide insight into how selective 

pressures may have mediated the evolution of different echolocation signals and 

strategies in toothed whales, allowing comparative analysis with bats, whose 

echolocation evolved in parallel with that of odontocetes (Thomas ef a/., 2002). 

1.2.5 Overview of Harbor Porpoise and Sperm Whale Echolocation 

Two toothed whale species, the harbor porpoise and the sperm whale, are 

considered specifically in this thesis. They contrast strongly in terms of size, 

habitat, prey species consumed, echolocation signals produced, and also the 

state of current research on their echolocation and foraging behavior. The 

following sections offer a brief overview of the biology and biosonar of each 

species. 

1.2.5.1 Sperm Whales 

Sperm whales are the largest toothed whales, reaching lengths of up to 13 

meters (females) or 18 meters (males) (Reynolds and Rommel, 1999; 

Whitehead, 2003). Females and immature animals live in stable matrilineal 

social groups that contain about 10.5 individuals on average, and are generally 

found in waters greater than 1 km deep at latitudes of less than 50 degrees 
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(Whitehead, 2003). Males, on the other hand, are much more solitary as adults, 

and have more extensive ranges including polar latitudes and shallower areas 

(Whitehead, 2003). 

Unlike many dolphins, pilot whales, belugas and killer whales, which use 

tonal sounds for social communication, sperm whales use clicks for both 

echolocation and communication (Whitehead, 2003). They do produce at least 

one type of tonal sound, the trumpet (Teloni et al., 2005), but codas are their 

most common social sound (Watkins and Schevill, 1977; Whitehead, 2003; 

Rendell and Whitehead, 2005). Codas are short, stereotyped rhythmic series of 

clicks (Watkins and Schevill, 1977; Whitehead, 2003); sperm whales from 

different regions seem to have distinct coda repertoires (Rendell and Whitehead, 

2005). The individual coda clicks are distinguishable from regular echolocation 

clicks based on their lower frequency (centroid ~5 kHz), longer duration, and 

lower decay rate of multipulses (Madsen et al., 2002; Whitehead, 2003). 

Sperm whales produce echolocation clicks that are high-amplitude (240 

dB re 1 pPa peak-to-peak) and relatively low-frequency (centroid frequency -15 

kHz) (Mohl et al., 2000; Mohl ef a/., 2003). Sperm whales use echolation to 

locate prey (Mohl et al., 2000; Miller et al., 2004a). They produce regular 

echolocation clicks almost continuously while foraging at depth, interrupted only 

by short pauses and buzzes (short series of rapid echolocation clicks indicative 

of attempted prey capture (Whitehead 2003, Miller et al. 2004a)). Whales begin 

producing echolocation clicks during the descent phase of foraging dives, and 

stop clicking during or just prior to ascent (Watwood et al., 2006). With the 

exception of mature males foraging at high latitudes (Teloni et al., 2008), they do 

not generally produce series of regular echolocation clicks while at the surface or 

during shallow dives (Watwood et al. 2006). 

Historically, sperm whale populations were decimated by whaling; 

Whitehead (2002) estimated that global sperm whale populations in 1999 were 
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68% smaller than pre-whaling populations. Currently, concern has arisen that 

exposure to human generated noise (for example, shipping noise, naval sonars, 

and airguns) may have adverse effects on their behavior and population 

dynamics (Richardson et a/., 1995; Ocean Studies Board, 2003; Anonymous, 

2004; Barlow and Gentry, 2004; Tyack, 2008). 

1.2.5.2 Harbor Porpoises 

Harbor porpoises are very small toothed whales which inhabit temperate 

and subarctic waters. Other than mother-calf pairs, they do not usually form 

stable social groups. Like sperm whales, they use clicks for both echolocation 

and communication, and are not known to produce any tonal sounds (Amundin, 

1991; Au, 1993). 

Porpoises use echolocation for foraging and navigation (Au, 1993; Verfuss 

et a/., 2005). Their echolocation signals are much more narrowband than those 

of most larger toothed whales; porpoise echolocation clicks are about 150 usec 

long, with peak frequency between 120 - 140 kHz and a -3 dB bandwidth of 

about 10-15 kHz (Au, 1993). They tend to forage in shallow, coastal waters 

(less than a few hundred meters deep) (Westgate et a/., 1995; Read and 

Westgate, 1997; Reynolds and Rommel, 1999), and they consume species of 

fish that tend to be found at or near the sea floor (Fontaine et a/., 1994; Santos et 

a/., 2004; Akamatsu et a/., 2007). Consequently, they may forage in a highly 

cluttered acoustic environment. This fact, combined with the observed 

differences between porpoise echolocation signals and those of other whales, 

suggests that porpoises may deploy their biosonar differently from better-studied 

oceanic species. 

The porpoise auditory system is specialized for ultrasonic hearing. The 

range of best hearing for harbor porpoises is 16-140 kHz, and for frequencies 

above 32 kHz, porpoises have the most acute hearing of any odontocete species 

that has been tested (Kastelein era/., 2002). 
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Harbor porpoises also seem to be especially sensitive to anthropogenic 

noise, showing strong avoidance reactions in response to pingers and other 

ultrasonic sounds (Kraus et a/., 1997; Kastelein et al., 2000; Johnston, 2002). 

Porpoises live in coastal areas where fisheries are active, vessel traffic is 

intense, and marine construction (e.g., for offshore wind farms) may occur, so 

they face mortality from entanglement in bottom-set gillnets or other fishing gear, 

entrapment in herring weirs, and behavioral disruption or habitat exclusion due to 

anthropogenic noise. 

Bycatch in fishing gear has well-documented effects on harbor porpoise 

populations, and controlled experiments have shown that pingers (devices 

attached to fishing gear that emit high-frequency sounds designed to deter 

porpoises coming near gear) effectively reduce porpoise approaches to gear, at 

least over short deployment periods of less than a day (Kraus et al., 1997; 

Kastelein etal., 2000; Culik et al., 2001; Carlstrom et al., 2002).  In the U.S., 

Canada, and the E.U., management agencies are working to reduce porpoise 

bycatch by closing areas to certain types of fishing gear and mandating use of 

pingers (Bowen etal., 2001; ASCOBANS, 2002; Joint Nature Conservation 

Committee U.K., 2006). Field studies have indicated that, although porpoises 

are displaced from the vicinity of pingers upon initial deployment, the effect 

disappears after about 10 days of pinger operation (Cox et al., 2001). Recent 

research with captive animals also suggests that porpoises may become 

habituated to pinger-like sounds after repeated exposures over several days, 

failing to avoid the sound source in later exposures (Teilmann et al., 2006). 

However, research to date includes very few field observations of individual 

porpoise movements and vocalizations near fishing gear or in response to noise 

stimuli (for example, pingers, vessels, or construction noise). Unless researchers 

can measure how porpoises normally deploy their echolocation to forage and 

navigate in the presence and absence of fishing gear or other obstacles, it will be 

nearly impossible for them to quantify the effects of pingers or other disturbance 
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on foraging behavior. Field observations of porpoise acoustic behavior could aid 

in the design and testing of gear to reduce bycatch, and could inform more 

effective management strategies. 

Finally, because the porpoise's longer, high-frequency, narrowband signal 

closely resembles some signals used in human-made sonar, a better 

understanding of how porpoises navigate and forage in acoustically cluttered 

environments could provide insight for engineers designing automated acoustic 

navigation systems. 

1.3 Need for New Technology to Study Porpoise Echolocation 

Current technology, which includes hydrophones and several tagging 

techniques, is poorly suited for gathering concurrent audio and behavior data on 

individual harbor porpoises. 

Porpoise acoustic behavior can be studied in the field with hydrophones, 

but in most cases such studies will not record any individual porpoise for more 

than a few minutes (Villadsgaard et al., 2007). Because porpoise clicks are so 

high-frequency (centered at about 130 kHz (Au et al., 1999)), they are quickly 

attenuated as they travel through the ocean, limiting the detection range of 

hydrophones. Clicks are highly directional, so they may remain undetected even 

at ranges of tens of meters if the animal does not direct clicks toward the 

recording apparatus. 

Satellite tags have been deployed on harbor porpoises for weeks or 

months to track surfacing locations (Westgate et al., 1995), but they do not 

provide detailed short-timescale data or information about underwater behavior 

or vocalizations. 

Akamatsu and collaborators have developed a small-whale tag that logs 

up to 72 hours of data, including time and level of porpoise clicks along with 

movement data (Akamatsu et al., 2005); however, the tag employs a click 
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detector that may miss clicks or detect false positives, and it does not store a 

broadband audio recording. Broadband audio is critical for some studies of 

porpoise foraging ecology (especially analysis of outgoing signal and returning 

echo characteristics, and studies relating variability in acoustic characteristics of 

outgoing signals to environmental conditions, target properties, and foraging 

phase). 

The Dtag, developed by Mark Johnson and others, is an archival whale 

tag that records broadband audio along with movement data (Johnson and 

Tyack, 2003). The Dtag is designed for deployment on large whales, and its 

housing and attachment system are too large and bulky for porpoises. Also, the 

Dtag records audio at up to 192 kHz; harbor porpoise clicks are centered at 

about 130 kHz, requiring a higher sampling rate (Au, 1993). To facilitate studies 

of echolocation, foraging, and navigation of individual harbor porpoises, 

researchers need a new device with the appropriate audio recording capability 

and movement sensors, packaged to allow minimally invasive, low-drag 

attachment to a porpoise. 

However, recent tagging research highlights the power of acoustic 

recording tags to study echolocation strategies.  For example, beaked whale 

tagging experiments have resulted in recordings of both outgoing whale 

echolocation clicks and returning echoes (Johnson et a/., 2004; Madsen etal., 

2005b). Records of echolocation behavior that include echoes can provide 

insight into the acoustic features used by whales to select prey items, as well as 

the type of information they glean from their biosonar (Madsen et a/., 2005b; 

Johnson et a/., 2008; Jones et al., 2008). Because of porpoises' small size and 

sloping head shape, a dorsally mounted acoustic tag may be able to record 

similar echoes, allowing comparison between oceanic, deep-diving beaked 

whales and coastal porpoises. 
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Given the considerations outlined above, a major objective of my thesis 

has been to develop a tag to better characterize the echolocation and foraging 

behavior of harbor porpoises. In the field of basic and comparative studies of 

animal echolocation, some of the most important outstanding research questions 

relate to the details of porpoise movements during foraging events, including the 

ranges at which they can detect echoes from targets and select them as potential 

prey; possible variations in the acoustic properties of their biosonar signals 

depending on their acoustic environment and the phase of foraging; and the 

acoustic features of echoes returning from prey or surroundings that porpoises 

could use for prey selection, prey capture, or navigation.  Recent work to develop 

behavior and audio-recording tags for whales has allowed researchers to collect 

data on the underwater behavior of the animals in unprecedented detail. 

1.4 Need for Analytical Tools for Marine Mammal Behavior Data 

Because of the cost and logistical difficulties involved with field work, most 

studies of marine mammal behavior involve relatively few individual animals. 

This 'small sample size' problem often means that studies have little power to 

detect changes in behavior.  Even when anecdotal evidence of behavioral 

reactions to a certain stimulus exists, careful experimentation and rigorous 

statistical analysis of the data seldom happen, and even more rarely provide 

results definitive enough to allow scientists to generalize from the behavior of a 

few individuals to predict behavior or response of a population. 

Analysis of ethological data, and whale behavior data in particular, is 

complicated by several factors. First, rather than collecting a limited dataset 

suited for application of a specific analytical method to test a particular 

hypothesis, experiments often produce enormous datasets containing acoustic 

data, animal movement data, or other ethological data. Researchers are then 

faced with the difficulty of summarizing all that data and testing for "differences in 

behavior" under varying experimental conditions. Rather than seeking out or 
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designing statistical methods suited to the characteristics of each dataset and 

each hypothesis to be tested, may researchers prefer to choose from among a 

small set of familiar statistical tests, regardless of the application. This approach 

can produce misleading results if the selected tests are not appropriate to the 

dataset. 

For example, many studies result in data on the occurrence of particular 

behaviors over time.   In such datasets, behavioral events in the time series are 

seldom statistically independent; instead the identity, duration, or timing of an 

event usually depends on the features of previous events (for examples, see 

Chapter 5 and Appendix A of this thesis; Haccou and Meelis, 1992; Miller et a/., 

2004a; Miller et a/., 2004b).  Most familiar parametric statistical tools are 

inappropriate for such serially dependent time series (see Appendix A for a more 

detailed discussion of this topic).  In addition, such tests generally have low 

power when the dataset comprises observations of a small number of individuals; 

since small sample size is a perpetual problem in marine mammal studies 

especially, small behavior changes could often go undetected. 

A wide variety of parametric and nonparametric statistical methods and 

computational approaches for analysis of time-series data have been developed 

(for example, Cox and Lewis, 1978; Haccou and Meelis, 1992; Huzurbazar, 

2004), but ethologists have not always worked closely with statisticians and 

mathematical modelers to customize them for application to animal behavior 

data.  In Chapter 5 of this thesis, I present an attempt at such development of 

customized analytical techniques to test for changes in sperm whale behavior in 

response to airgun sounds. 

In this thesis, I do not specifically address the many difficulties involved in 

designing studies to gauge responses of individual marine mammals to sound. 

However, I do describe the development and application of several analytical 
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tools specifically designed to extract data efficiently from behavioral time-series 

and to compare behavior under various conditions. 

1.4 Implications of Ocean Sound Propagation for Marine Mammals 

Investigations of marine mammal bioacoustics often face an obstacle 

analogous to the inapplicability of standard statistical methods to whale behavior 

data: standard, simplified descriptions of ocean acoustics often prove 

inadequate to accurately characterize sound propagation in marine mammal 

habitats.  However, accurate characterization of sound transmission is critical for 

estimating the ranges at which whales can communicate, detect echolocation 

targets, or be affected by anthropogenic noise. Therefore, realistic modeling of 

acoustic propagation is critical in marine mammal science, both for basic science 

and for management. 

Ocean acousticians have developed many tools to allow such modeling 

(Jensen etal., 1994; Medwin and Clay, 1998); these tools are increasingly 

applied in marine mammal studies (for example, Erbe and Farmer, 2000a; b; 

Croll etal., 2001; Sirovic etal., 2007; Tiemann etal., 2007). Even so, many 

research papers (e.g., Mohl et al., 2003; Au et ai, 2004; Madsen ef a/., 2004; 

Mooney etal., 2004) and management protocols (e.g., National Marine Fisheries 

Service, 2003; Barlow and Gentry, 2004; Gordon etal., 2004) continue to use 

highly simplified descriptions of acoustic propagation without verifying their 

validity (either to simplify calculations, because they wish to present results 

relevant to a generic rather than a particular location, or because data on the 

environmental characteristics (required for more detailed models) was 

unavailable). In some cases, as detailed in Chapters 3-4 of this thesis, failing to 

model acoustic propagation realistically can lead to large errors in estimates of 

animal detection ranges or noise exposure levels. 

1.5 Thesis Overview and Chapter Summaries 
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In my thesis research, I address several of the key research questions 

discussed in previous sections: 

1. How do porpoises deploy their echolocation during prey capture in 

captivity? Are their strategies similar to those of bats or of larger, deep- 

diving oceanic toothed whales? 

2. Is it possible to develop analytical models of whale foraging behavior, 

and to use them to compare behavior during exposure to noise or other 

environmental factors? 

3. How can the environmental characteristics of marine mammal habitats 

affect acoustic propagation and thus the ranges at which whales can 

communicate, detect echolocation targets, or be affected by 

anthropogenic noise? 

The following sections present brief summaries of each chapter my thesis. 

1.5.1 Chapter 1 - Introduction 

In this chapter, I describe the motivation and objectives of my thesis, 

including a review of previous work on animal echolocation and background 

information on applications of acoustic propagation models and quantitative 

modeling techniques to marine mammal behavior and bioacoustics. The chapter 

concludes with a thesis outline, which comprises brief summaries of each thesis 

chapter. 

1.5.2 Chapter 2 - Acoustic Behavior of Echolocating Porpoises During Prey 

Capture 

Porpoise echolocation has been studied previously in target detection 

experiments using stationed animals and steel spheres as targets, but little is 

known about the acoustic behavior of free swimming porpoises echolocating for 

prey. This chapter describes the application of a newly developed tag, which 

records audio and animal movement data; the tag was deployed on trained 
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captive porpoises during prey capture experiments in which the porpoises used 

echolocation to catch (dead) fish. Results include detailed analysis of the 

porpoises' echolocation behavior leading up to and following prey capture 

events, including variability in that behavior in response to vision restriction, fish 

species captured, and individual porpoise tested. 

1.5.3 Chapter 3 - Transmission Loss in Porpoise Habitats 

This chapter presents a comparison of measured and modeled 

transmission loss in porpoise habitats near Grand Manan Island, New Brunswick, 

Canada and Aarhus, Denmark. Two models, one based on a simple spherical 

spreading law and one on output from the Bellhop ray-trace acoustic propagation 

model, were tested. Output from both models matched field observations quite 

well in most cases. However, when refraction in the water column or 

surface/bottom interactions played an important role in determining transmission 

loss, the spreading law model failed. The results of the study indicate that 

variable sound propagation conditions in porpoise habitats can cause significant 

variability in transmission loss. Variations in transmission loss will change the 

ranges at which porpoises can communicate acoustically, detect echolocation 

targets, and be detected via passive acoustic monitoring. 

1.5.4 Chapter 4 - Modeling acoustic propagation of airgun array pulses 

recorded on tagged sperm whales 

Airgun arrays, which are used for oil industry and geophysical exploration 

of the sea floor, produce high-amplitude, low-frequency sound that could 

potentially have adverse effects on whale behavior. Chapter 4 describes the 

application of several acoustic propagation models to explain observed patterns 

in sperm whale exposure to airgun sounds. The data, which comprise airgun 

pulses recorded on free-ranging tagged sperm whales, include observations of 

unexpectedly high-amplitude exposure levels at long ranges and unexpectedly 

high-frequency airgun pulses recorded on animals near the surface. The 
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propagation model output allows explanation of those observations in terms of 

sound refraction in the water column, interaction of sound with the sea floor and 

surface, and airgun array directivity. The results of this study emphasize the 

importance of realistic characterization of sound sources and acoustic 

propagation in marine mammal noise exposure management. 

1.5.5 Chapter 5 - Modeling Sperm Whale Response to Airgun Sounds 

This chapter describes the development and application of statistical and 

modeling approaches to quantify changes in sperm whale behavior in response 

to airgun sound exposure. One approach involves the rotation test, a 

nonparametric statistical test for changes in behavioral rates. The other method 

is a continuous-time semi-Markov chain model of sperm whale foraging behavior, 

which allows for detection of behavioral changes in response to noise exposure 

or changes in other experimental conditions. Strengths of the two methods 

include their applicability to either individual-whale or multi-individual datasets, 

and their relatively high power to detect changes in behavior even when the 

number of animals tested is small. Application of the methods indicated that, 

even at the low exposure levels observed in the study, some individual sperm 

whales significantly altered their foraging behavior in response to airgun noise. 

1.5.6 Chapter 6 - Conclusions 

This concluding chapter briefly assesses the implications of the thesis as a 

whole, and discusses several directions in which future research on the thesis 

topics could proceed. 

1.5.7 Appendices 

Appendix A is a manuscript entitled "A rotation test for behavioural point 

process data" by Stacy DeRuiter and Andrew Solow, which describes in detail 

the rotation test used in Chapter 5. Appendix B contains selected annotated 

Matlab computer code used for various analyses. 
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Chapter 2. Acoustic behavior of echolocating porpoises during prey 

capture 

2.1 Introduction 

Echolocation by most foraging bats consists of several distinct phases: 

first, a search phase consisting of regularly-spaced echolocation signals; next, an 

approach phase, in which the bat focuses its attention on one prey target and 

begins to approach it; then, a terminal phase, during which echolocation signals 

are emitted at a faster, increasing repetition rate (Schnitzler and Kalko, 2001). 

Often, each phase of echolocation is characterized by specific signal waveforms 

and patterns of signal repetition rate (Schnitzler and Kalko, 2001). The terminal 

phase is often termed a buzz (Schnitzler and Kalko, 2001).  During the terminal 

phase or buzz, acoustic characteristics of the echolocation clicks are specialized 

for precise target localization and range determination, and the more closely- 

spaced clicks provide more frequent updates of prey location. Bat buzz 

production generally stops at the time of prey capture or slightly before (Griffin et 

a/., 1960; Kalko and Schnitzler, 1989; Hartley, 1992b; Kalko, 1995; Moss and 

Surlykke, 2001; Hiryu et al., 2007). After a buzz, bats generally pause 

echolocation click production for a period of several hundred milliseconds to 

several seconds (Griffin era/., 1960; Kalko and Schnitzler, 1989; Hartley, 1992b; 

Kalko, 1995; Moss and Surlykke, 2001; Hiryu et al., 2007). The mean duration of 

the post-buzz pause is often longer after successful captures than after 

unsuccessful ones (Acharya and Fenton, 1992; Britton and Jones, 1999; 

Surlykke er al., 2003). This increase in pause duration may be related to time 

required for prey handling; however, Britton and Jones (1999) found that pause 

duration did not increase as prey size (and thus inferred handling time required) 

increased. Some studies have also demonstrated that clicks emitted after 

successful captures have larger inter-pulse intervals and distinctive frequency 

characteristics (Britton and Jones, 1999; Surlykke et al., 2003). Combined, these 

36 



features may allow researchers to distinguish successful prey capture attempts 

from unsuccessful ones on the basis of acoustic data alone, without requiring 

high-resolution visual observations of each prey capture attempt. Accurate 

estimates of bat foraging success could thus be derived from acoustic 

recordings. 

A few species of toothed whales have been shown experimentally to use 

echolocation for navigation or for prey detection and capture, and most other 

odontocetes produce sounds potentially useful for echolocation (Evans, 1973; 

Au, 1993; Reynolds and Rommel, 1999). A sequence of events analogous to 

that described for bats has been recorded from echolocating narwhals Monodon 

monoceros (Miller era/., 1995), sperm whales Physetermacrocephalus (Miller et 

a/., 2004), and beaked whales Mesoplodon densirostris and Ziphius cavirostris 

(Johnson et a/., 2004; Madsen et a/., 2005; Johnson et a/., 2008). All toothed 

whale species studied do emit regularly spaced clicks, thought to function in 

echolocation as does the search phase of bat echolocation, and they also 

produce terminal buzzes, as bats do (Au, 1993; Miller era/., 1995; Mohl era/., 

2000; Johnson et a/., 2004; Miller et a/., 2004; Thomas et a/., 2004). 

Buzz production rate has been proposed as a proxy for toothed whale 

foraging success rate (Miller et a/., 2004; Watwood et ai, 2006). Since direct 

observation of prey capture events by foraging toothed whales is difficult or 

impossible, classifying echolocation buzzes as successful or failed prey capture 

attempts has also proved elusive; therefore studies of toothed whales to date 

have not reported any reliable acoustic indicators of prey capture success. 

Without such indicators, it is difficult to estimate the actual mass of prey 

consumed based on the buzz rate proxy. 

The majority of buzzes produced by sperm whales are followed by pauses 

of about 5 seconds (Miller et ai, 2004), while beaked whales often pause for 

much less than a second after buzzes (Johnson et ai, 2004). Sperm whales 
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also pause regular clicking at intervals during the search phase of echolocation; 

these pauses are thought to be related to redistribution of air within the sound 

generating apparatus (Wahlberg, 2002). Pauses following buzzes might serve 

the same function, or might be related to prey handling time as is thought to be 

the case in bats. 

Beaked whales initiate buzzes when they are about one body length (~4 

m) from their selected prey item (Madsen et ai, 2005). In comparison, bats 

initiate buzzes at distances of about 2-10 body lengths (Daubenton's bat Myotis 

daubentonii, 10-22 cm (Kalko and Schnitzler, 1989); European pipistrelles 

Pippistrellus sp., about 50 cm (Kalko, 1995)). Published data on toothed whales 

do not indicate whether prey capture occurs during or after the buzz, but for 

beaked whales and sperm whales, capture has been assumed to occur at or 

near the end of the buzz based on two lines of evidence: the timing of impact 

sounds in tag audio recordings (Johnson et ai, 2004) and the observed increase 

in angular acceleration near the end of the buzz (Johnson et ai, 2004; Miller et 

ai, 2004). 

In summary, toothed whales, like bats, use echolocation for orientation 

and prey capture. Although the echolocation signal characteristics and target 

detection abilities of various toothed whale species have been investigated, there 

have been relatively few experiments that recorded the acoustic behavior of free 

swimming animals as they use echolocation to find prey. Tagging studies have 

provided data on sound production and animal movements during foraging 

behavior for a variety of species, including sperm whales (Physeter 

macrocephalus: Madsen et ai, 2002a; Miller et ai, 2004; Teloni er ai, 2008a), 

beaked whales (Mesoplodon densirostris and Ziphius cavirostris: Madsen et ai, 

2005; Johnson et ai, 2006; Tyack et ai, 2006), pilot whales (Globicephala 

macrorhynchus; Aguilar Soto et ai, 2008), finless porpoises (Neophocaena 

phocaenoides; Akamatsu et ai, 2005), and harbor porpoises {Phocoena 
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phocoena; Akamatsu et a/., 2007). While these studies have provided a wealth 

of information on echolocation click production rates and characteristics in 

relation to animal depth and movements, none of them were able to collect data 

on timing of capture or prey capture success rates. Several papers also describe 

and discuss intriguing evidence of variability in the echolocation strategies of 

beaked whales (Madsen et a/., 2005; Johnson et al., 2008) and sperm whales 

(Teloni et al., 2008a). The studies linked different prey capture strategies to 

variation in prey type pursued, as evidenced by variation in prey echo 

characteristics (Johnson et al., 2008) or capture depth (Teloni et al., 2008b); 

however, none of the researchers had the means to collect field data on prey 

species captured. Without such data, it is more difficult to interpret variability in 

echolocation strategies in response to different prey types, and it is not possible 

to assess how the timing of echolocation phases relates to the actual capture 

time. 

In the current study, I applied archival tags to captive harbor porpoises as 

they captured fish. The tags logged acoustic and movement data during the prey 

captures, allowing me to analyze and describe the animals' detailed echolocation 

behavior leading up to and following prey capture events. Specifically, I was able 

to test the hypotheses that the porpoises would: 

• initiate echolocation buzzes just before the time of prey capture, when 

they were about one body length away from the prey fish; 

• terminate those buzzes at or just before the time of prey capture; 

• reduce their click amplitude significantly during buzzes; and 

• respond to differences in experimental conditions (primarily, availability of 

visual cues and prey type) by varying the timing of their approach to prey 

and the level and timing of their echolocation clicks. 
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2.2 Methods 

2.2.1 Tag development and tag specifications 

To carry out the prey capture experiments, a modified version of the Dtag 

(Johnson and Tyack, 2003) was developed for use with captive harbor porpoises. 

The current version of the Dtag has a maximum sampling frequency of 192 kHz, 

which is insufficient to record high-frequency porpoise vocalizations. Since 

porpoise clicks are centered at about 130 kHz and have a -3dB bandwidth of 

about 16 kHz (Au et a/., 1999), audio recordings of porpoise clicks must be 

sampled at 300 kHz or more to avoid aliasing. To add this high-frequency 

sampling capacity to the Dtag, I worked with Alexander Bahr, who developed a 

new audio recording circuit for the tag. The resulting porpoise tag records audio 

data in stereo, digitizing the data at sampling frequencies of up to 500 kHz per 

channel at 16-bit resolution and storing it in onboard memory.   The peak clip 

level of the tag audio recordings was 191 dB re 1 uPa. The tag synchronously 

records data from movement sensors (sampled 50 times per second), including 

3-axis accelerometers and magnetometers and a pressure sensor, which allow 

calculation of the animal's acceleration, pitch, roll, heading and depth. With 

lossless data compression, the tag can record about an hour of audio and sensor 

data in its 3 GB memory. The tag attaches to porpoises noninvasively, with 

custom-made suction cups, as shown in Figure 2.1. 
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Figure 2.1. The porpoise tag attached to a captive porpoise at the Fjord & Baelt 

Center, Kerteminde, Denmark. Photo by Alexander Bahr. 

2.2.2 Prey capture experiments 

Prey capture experiments took place at the Fjord & Baelt Center in 

Kerteminde, Denmark, which houses 4 captive harbor porpoises. Two 

porpoises, Eigil (male; at Fjord & Baelt since April 1997) and Sif (female; at Fjord 

& Baelt since July 2004) participated in the experiments. The porpoises were 

trained to carry the tag, which was attached dorsally just behind the blowhole as 

shown in Figure 2.1. At the start of each prey capture trial, a trainer called the 

tagged porpoise to a station at one end of the experimental pool. On a cue from 

the trainer, the tagged porpoise was sent across the pool; at the same cue, an 

assistant at the other end of the pool slapped the water surface with a stick (as 

an initial orientation cue for the porpoise) and then dropped a fish into the water 

at the same location. The porpoises' task was to find and eat the fish, then 

return to station with the trainer at the other end of the pool. During each trial, in 

addition to tag data, I made underwater video recordings of the prey captures, 

and I collected stopwatch data on the times of key events (trainer cues, fish 

release, and prey capture (defined as first physical contact between the 
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porpoise's mouth and the fish)). The tag, video and stopwatch data were all 

time-synchronized. 

Trials were conducted with and without eyecups (suction cups that 

covered the porpoises' eyes like blindfolds and forced them to locate the fish 

without the aid of vision).  I ran 71 prey capture trials between January 9 and 

January 13, 2008. Trials were carried out in 12 sessions of 4-8 trials per session; 

all sessions contained trials with and without eyecups and trials with different fish 

types.  Fish used in the trials were dead, frozen fish from the same stock that 

comprised the porpoises' normal diet at Fjord & Baelt. They included herring 

(Clupea harengus, 28 fish total, mean fork length 21.0 cm), capelin (Mallotus 

villosus, 37 total, mean fork length 15.1 cm), and sprat (Sprattus sprattus, 6 fish 

total, mean fork length 12.6 cm). Table 2.1 presents detailed information on the 

characteristics of each trial. 

42 



Eye Cups Success 

Date Session Trial # Porpo se        Y/N Fish Y/N 

1/9/2008 pp08_009a 1 Eigi N C Y 

1/9/2008 pp08_009a 2 Eigi N H Y 

1/9/2008 pp08_009a 3 Eigi Y S Y 

1/9/2008 pp08_009a 4 Eigi Y H Y 

1/9/2008 pp08_009a 5 Eigi Y H Y 

1/9/2008 pp08_009a 6 Eigi N S Y 

1/9/2008 pp08_009b 1 Eigi N S Y 

1/9/2008 pp08_009b 2 Eigi N H Y 

1/9/2008 pp08_009b 3 Eigi Y H Y 

1/9/2008 pp08_009b 4 Eigi Y C Y 

1/9/2008 pp08_009b 5 Eigi Y C Y 

1/9/2008 pp08_009b 6 Eigi Y H Y 

1/9/2008 pp08_009b 7 Eigi N H Y 

1/9/2008 pp08_009c 1 Eigi Y C Y 

1/9/2008 pp08_009c 2 Eigi Y H Y 

1/9/2008 pp08_009c 3 Eigi N C Y 

1/9/2008 pp08_009c 4 Eigi N H Y 

1/10/2008 pp08_010a 1 Eigi N C Y 

1/10/2008 pp08_010a 2 Eigi N H Y 

1/10/2008 pp08_010a 3 Eigi Y C Y 

1/10/2008 pp08_010a 4 Eigi Y H Y 

1/10/2008 pp08_010a 5 Eigi Y H Y 

1/10/2008 pp08_010a 6 Eigi N C Y 

1/10/2008 pp08_010c 1 Eigi Y C Y 

1/10/2008 pp08_010c 2 Eigi Y H Y 

1/10/2008 pp08_010c 3 Eigi Y H Y 

1/10/2008 pp08_010c 4 Eigi N C Y 
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1/10/2008 pp08_010c 5 Eigil N S Y 

1/10/2008 pp08_010c 6 Eigil N H Y 

1/11/2008 pp08_011a 1 Eigil N C Y 

1/11/2008 pp08_011a 2 Eigil N c Y 

1/11/2008 pp08_011a 3 Eigil Y c Y 

1/11/2008 pp08_011a 4 Eigil Y c Y 

1/11/2008 pp08_011a 5 Sif N c Y 

1/11/2008 pp08_011a 6 Sif N c Y 

1/11/2008 pp08_011a 7 Sif N c Y 

1/11/2008 pp08_011a 8 Sif N c Y 

1/12/2008 pp08_012a 1 Sif N c Y 

1/12/2008 pp08_012a 2 Sif N c Y 

1/12/2008 pp08_012a 3 Sif Y H Y 

1/12/2008 pp08_012a 4 Sif Y C Y 

1/12/2008 pp08_012a 5 Sif Y s N 

1/12/2008 pp08_012a 6 Sif N c Y 

1/12/2008 pp08_012a 7 Sif f c Y 

1/12/2008 pp08_012b 1 Sif Y c N* 

1/12/2008 pp08_012b 2 Sif Y c Y 

1/12/2008 pp08_012b 3 Sif Y H Y 

1/12/2008 pp08_012b 4 Sif N C Y 

1/12/2008 pp08_012c 1 Sif N H Y 

1/12/2008 pp08_012c 2 Sif N H Y 

1/12/2008 pp08_012c 3 Sif Y C Y 

1/12/2008 pp08_012c 4 Sif Y C Y 

1/12/2008 pp08_012c 5 Sif f c Y 

1/12/2008 pp08_012c 6 Sif Y c N 

1/12/2008 pp08_012c 7 Sif Y c Y 

1/13/2008 pp08_013a 1 Sif Y H N 
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1/13/2008 pp08_013a 2 Sif Y C Y 

1/13/2008 pp08_013a 3 Sif Y C Y 

1/13/2008 pp08_013a 4 Sif Y H Y 

1/13/2008 pp08_013a 5 Sif f H Y 

1/13/2008 pp08_013a 6 Sif Y H Y 

1/13/2008 pp08_013c 1 Sif N H Y 

1/13/2008 pp08_013c 2 Sif N H Y 

1/13/2008 pp08_013c 3 Sif N C Y 

1/13/2008 pp08_013c 4 Sif Y H Y 

1/13/2008 pp08_013c 5 Sif Y C Y 

1/13/2008 pp08_013c 6 Sif Y C Y 

1/13/2008 pp08_013e 1 Sif Y H Y 

1/13/2008 pp08_013e 2 Sif Y H Y 

1/13/2008 pp08_013e 3 Sif N S Y 

1/13/2008 pp08_013e 4 Sif N C Y 

Table 2.1. Detailed information on prey capture trials. Abbreviations of fish type 

are as follows: C, capelin; H, herring; S, sprat. An "f in the eyecups column 

means that eyecups fell off before the prey capture attempt; these trials were 

analyzed as no-eyecups trials, indicates a trial in which the porpoise did not 

catch the fish, not because of failure to find it, but because it was stolen by 

another porpoise before he arrived. 

2.2.4 Data analysis 

Timing of prey capture 

For each trial, I used the stopwatch data to calculate the time it took the 

porpoises to catch each fish, defined as the time from trainer cue until the fish (or 

part of the fish) was in the porpoise's mouth. (In these experiments, porpoises 

were never observed to lose or drop fish after having them in their mouths, 
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although they did sometimes manipulate or carry the fish briefly before 

swallowing them.) I applied a two-sample t-test to check whether the mean 

capture duration was different for trials with and without eyecups. 

Porpoise acoustic behavior during prey capture 

For each trial, a 30-second segment of the tag audio recording was 

analyzed:  15 seconds before and 15 seconds after the stopwatch time of prey 

capture. Tag audio data were filtered in Matlab (The Mathworks, Natick, MA) 

with a 4-pole Butterworth bandpass filter between 100 and 200 kHz. (The filter 

was applied in both forward and reverse directions, using the filtfilt Matlab 

command, to avoid time-shifting of the output signal.) Porpoise clicks were 

detected in the filtered audio recordings using a custom-written envelope-based 

click detector in Matlab. Selected Matlab code used in the analysis is included in 

Appendix B. The click detection algorithm was designed to detect clicks despite 

high variability in data click levels and inter-click intervals. Briefly, it proceeded 

as follows: 

1. Calculate the envelope of the audio signal; detect candidate clicks at any 

time point where the envelope of the signal exceeds the detection 

threshold. 

2. After a candidate click is detected, do not detect any additional clicks 

within 1.3 msec following the initial detection. (This blanking time was 

selected after manual inspection of prey capture buzzes in the dataset; 

none of the examined buzzes contained inter-click intervals of less than 

1.3 msec.) 

3. Compare the maximum envelope level of the detected click to L, the mean 

of the maximum envelope levels of the preceding three clicks. Compare 

the inter-click interval (ICI) preceding the detected click to /, the mean ICI 

of the preceding three clicks.  If the detected click level is at least 0.5L and 

the detected click ICI is at least 0.21, accept it; otherwise reject. This 
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criterion serves to eliminate many surface and bottom reflections from the 

set of detected clicks. 

4. If the detected click does not meet the ICI acceptance criterion in (3), but 

its level is at least 3L, accept it anyway. 

5. If the detected click does not meet the level acceptance criterion in (3), but 

its ICI is at least 31, accept it anyway, and reset / to 100 msec. This rule 

allows detection of trains of quiet clicks even after sudden drops in click 

level, without promoting detection of quiet reflections/echoes between 

higher amplitude clicks. 

Click detector performance was checked visually by examining plots of the data 

waveforms overlaid with click detections. The time (in seconds until prey 

capture) and peak-to-peak (pp) level of each detected click was recorded. For 

plotting and further analysis, the click time-series data were binned into 0.2 

second time periods, and the mean level and click rate were calculated for each 

bin. 

To allow calculation of echolocation buzz start times, end times and 

durations, I arbitrarily defined the buzz as the time period during which click rate 

exceeded 125 clicks per second (about 3-4 times the mean pre-buzz click rate, 

and slightly higher than the upper values observed in transient variations about 

that mean (Fig. 2.3)). For the purposes of my calculations, a buzz started when 

the threshold click rate of 125 clicks per second was first exceeded, and ended 

when the click rate fell below threshold for the last time. Using the above criteria, 

I calculated the start time, end time and duration of each prey capture buzz, as 

well as the mean start time, end time and buzz duration for the set of all 67 

successful captures. I did not include buzzes that ended more than 5 seconds 

before prey capture or began more than 5 seconds after prey capture in our 

analysis. Those time limits are somewhat arbitrary, but as Figure 2.3 shows, 

buzzes outside those time limits did not seem to be associated with prey capture. 
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Rather, the rare buzzes that occurred more than 5 seconds before capture were 

probably related to non-prey objects (including landmarks or other porpoises) in 

the pool, and the buzzes that occurred more than 5 seconds after capture were 

likely related to the porpoises' returning to station with the trainers. 

Bats and toothed whales often fall silent for a short period following an 

echolocation buzz; the duration of this pause was calculated for each of the 67 

successful prey captures by determining the longest inter-click interval in the 5 

seconds following prey capture. 

2.3 Results 

Timing of prey capture 

It took the porpoises an average of 19.6 seconds to find and collect a fish 

while wearing eyecups, significantly longer than the 15.9 second average time 

without eyecups (t-test, df = 32, p = 0.000027). 

Porpoise acoustic behavior during prey capture 

The porpoises produced echolocation buzzes in 66 of the 67 successful 

prey capture trials.  Figure 2.2 shows the data on click rate as a function of time 

for all 67 prey capture trials; it clearly indicates that, on average, the porpoises 

began buzzing before they captured the fish, and continued to buzz after the 

capture event. On average, maximum buzz rates exceeded 300 clicks per 

seconds, and coincided with the time of prey capture. 
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Time since capture (sec.) 

Figure 2.2. Box-and-whiskers plot of click rate as a function of time for 67 prey 

captures by harbor porpoises (data in 0.2 sec bins). The red horizontal lines 

indicate the median value in each time bin; the top and bottom of the blue 

rectangle indicate the upper and lower quartiles within the bin. The dotted black 

lines extend to the largest and smallest observed values in the time bin, up to 1.5 

times the interquartile range beyond the blue box. Larger and smaller observed 

values are outliers, plotted as red dots. 
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Figure 2.3. Click rate as a function of time since prey capture. Each trace 

presents data from one prey capture trial; the thick black line presents the mean 

click rate over all 67 trials. 

For the 66 captures in which buzzes were detected, the mean buzz start 

time was 0.53 seconds before prey capture, end time was 0.83 seconds after 

prey capture, and mean buzz duration was 1.37 seconds. Figure 2.4 shows a 

stack plot of the start times, end times, and durations of all detected buzzes. 

After buzzes, porpoises paused their echolocation clicks for brief periods ranging 

from 65 msec to 2.1 sec; average pause duration over 67 successful captures 

was about 481 msec. This mean duration was about 10 times the average pre- 

capture inter-click interval (Figure 2.2). The minimum observed pause durations, 

however, were only slightly longer than the mean observed inter-click interval, 

and thus probably do not represent readily discernable pauses in click emission. 

Only 9 of the 67 pauses had durations of 1 second or greater. 
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Figure 2.4. Start times, end times, and durations of buzzes detected during 66 

prey captures. Y axis indicates buzz number (in this figure, buzzes are ordered 

according to start time). Some buzzes apparently begin after prey capture, 

probably because low-amplitude clicks earlier in the buzz were not detectable on 

the tag recordings (see Discussion section for further explanation). 

During buzzes, porpoises not only increased their click rate but also 

apparently decreased the level of their emitted clicks by about 12 dB. Figure 2.5 

shows the data on tag-recorded click level as a function of time for all 67 

successful prey captures. Because the tag was attached physically to the animal 

and positioned off-axis, behind the sound generator, these level measurements 

do not indicate source levels. They are probably at least 40 dB lower than on- 

axis source levels (Hansen, 2007). However, they may still provide some 

information about the relative amplitudes of emitted clicks. 
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Figure 2.5. Box-and-whiskers plot of click level as a function of time for 67 prey 

captures by harbor porpoises (data in 0.2 sec bins). Levels are the off-axis, on- 

animal levels from the tag recordings, not click source levels. The red horizontal 

lines indicate the median value in each time bin; the top and bottom of the blue 

rectangle indicate the upper and lower quartiles within the bin. The dotted black 

lines extend to the largest and smallest observed values in the time bin, up to 1.5 

times the interquartile range beyond the blue box. Larger and smaller observed 

values are outliers, plotted as red dots. 

As a summary of the information presented in Figures 2.2 and 2.5, Figure 

2.6 shows mean click rates and levels as a function of time for the 67 capture 

trials. This format does not give an accurate indication of the amount of scatter 

in the observations, but is convenient for comparing click rate and level under 

various conditions, so I have used it for subsequent figures. 
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Figure 2.6. Mean click rate and level as a function of time for 67 prey captures. 

The solid line indicates click level, while the dotted line indicates click rate. 

Figures 2.9 - 2.10 compare click rates and levels between varying sets of 

conditions: with and without eyecups (Fig. 2.7); Eigil versus Sif (Fig. 2.8); herring 

versus capelin (Fig. 2.9); and herring vs. capelin, for Eigil and Sif individually 

(Fig. 2.10). As shown in Figure 2.7, the presence or absence of eyecups had no 

obvious effect on maximum buzz click rate; buzzes appeared to begin slightly 

earlier in trials with eyecups, and they were slightly longer (or included a second 

peak in click rate after capture) in trials with eyecups. Compared to trials without 

eyecups, click levels during trials with eyecups tended to be a bit lower before 

capture and a bit higher after. Figure 2.8 shows that Sif tended to use click 

levels about 5-10 dB higher than Eigil at all times; in addition, her buzz click rate 

was much faster than his. Figure 2.9 compares click rates and levels for herring 

and capelin captures. While click rates were very similar for these conditions, 

mean click levels were about 3 dB higher for capelin captures, except 

immediately preceding prey capture, when they were equal. Sif tended to 

produce higher-amplitude clicks than Eigil, and she also participated in more 
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trials with capelin than he did - a combination of conditions that might account for 

part or all of the observed herring/capelin level difference. To investigate that 

possibility, I plotted click rate and level for herring versus capelin for Eigil and Sif 

individually (Fig. 2.10). Like the pooled data in Figure 2.9, the individual-animal 

data showed that click levels were about 3 dB higher during capelin captures 

than during herring captures. 
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Figure 2.7. Porpoise click rates (top panel) and levels (bottom panel) as a 

function of time. Solid traces show data from trials without eyecups (n = 34); 

dotted traces show data from trials with eyecups (n = 33). 
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Figure 2.8. Porpoise click rates (top panel) and levels (bottom panel) as a 

function of time. Solid traces show data from trials with Eigil (n = 33); dotted 

traces show data from trials with Sif (n = 34). 
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Figure 2.9. Porpoise click rates (top panel) and levels (bottom panel) as a 

function of time. Solid traces show data from trials with herring (n = 27); dotted 

traces show data from trials with capelin (n = 35). 
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Figure 2.10. Porpoise click rates (top panel) and levels (bottom panel) as a 

function of time. Solid black traces show data from trials with Eigil catching 

herring (n = 15); dotted black traces show data from trials with Eigil catching 

capelin (n = 14); solid grey traces show data from trials with Sif catching herring 

(n = 12); dotted grey traces show data from trials with Sif catching capelin (n = 

21). 

In addition to considering variations in click rate and level as functions of 

time since prey capture, I also investigated click level as a function of inter-click 

interval, or ICI (Figure 2.11). Click levels were relatively constant for ICIs greater 

than about 40 msec, but they decreased with decreasing ICI for ICIs less than 

about 40 msec. As shown in Figure 2.11, for ICIs of about 10-50 msec 

(corresponding to click rates of 20-100 clicks/second), the increase in median 

and maximum observed click levels as a function of ICI seemed to fit a 

20logio(ICI) curve relatively well. Figure 2.12 shows the click level versus ICI 

data as a scatter plot. The figure does not provide evidence for a clear 

distinction between buzz clicks and regular clicks on the basis of either ICI or 

click level. It is important to note that, although I tried to optimize the click 

detector to detect only clicks produced by the tagged porpoise, I cannot be 
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certain that none of the detected clicks were produced by other animals; some of 

the clicks in Figure 2.12 (perhaps especially the highest-amplitude clicks) may 

have been produced by animals other than the tagged porpoise. 

0        10 50 
Inter-click interval (msec) 

Figure 2.11. Box-and-whiskers plot of click level as a function of inter-click 

interval (or ICI; data in 2.5 msec bins). The red horizontal lines indicate the 

median value in each ICI bin; the top and bottom of the blue rectangle indicate 

the upper and lower quartiles within the bin. The dotted black lines extend to the 

largest and smallest observed values in the ICI bin, up to 1.5 times the 

interquartile range beyond the blue box. Larger and smaller observed values are 

outliers, plotted as red dots. The solid black lines show expected click levels, if 

levels varied as a function of ICI according to level = 20logio(ICI) + constant. The 

lines have the same rate of increase, but are roughly scaled to fit mean and 

maximum observed click levels. 
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Figure 2.12. Click level as a function of inter-click interval for all 171138 detected 

clicks in 67 prey capture trials. Color scale indicates the number of times a 

particular level/inter-click interval combination was observed. 

2.4 Discussion 

2.4.1 Use of Echolocation and Buzz Timing 

In all 67 of the successful prey capture trials, porpoises produced 

echolocation clicks throughout the prey capture trial regardless of whether or not 

they were wearing eyecups; in only one of the 67 trials did the porpoise capture 

the fish without producing an echolocation buzz. In certain conditions, some bats 

and dolphins have been shown to use passive listening rather than echolocation 

to find and capture prey (Fiedler, 1979; Wood and Evans, 1980; Gannon etal., 

2005). In these experiments, however, it seems that the porpoises always relied 

on active biosonar rather than passive listening to locate and capture prey fish. 

That finding is relatively unsurprising given my experimental set-up; passive 

listening for splashes could have provided the porpoises with information about 

the location where the prey fish was thrown into the water, but the dead fish 

would not have produced much further noise as they sunk and drifted in the 

58 



water. Passive listening may be favored when active echolocation has high 

ecological costs. However, given the extremely high frequency of porpoise 

clicks, the probability of their detection by either prey fish or predators is very low, 

so the ecological cost of porpoise echolocation is limited. Another reason to 

choose passive listening over biosonar might be energetic costs associated with 

sound production (Gannon era/., 2005), which have not been quantified for 

toothed whales. In bats, the cost of producing echolocation calls is high for 

stationary animals (Speakman et a/., 1989), but the added cost of calling once 

flying is extremely low, because the muscular exertions required for sound 

production also occur during flight (Speakman and Racey, 1991). In any case, 

my experiments probably do not provide reliable data to test the hypothesis that 

energetic costs favor adoption of a passive listening strategy, since the captive 

porpoises I studied were consistently well fed. 

To my knowledge, no previously published study has been able to 

determine the timing and duration of toothed whale echolocation buzzes in 

relation to the time of prey capture. Unlike bats, for which the end of the 

echolocation buzz occurs before or coincides with prey capture (Griffin et al., 

1960; Kalko and Schnitzler, 1989; Hartley, 1992b; Kalko, 1995; Moss and 

Surlykke, 2001; Hiryu era/., 2007; Melcon et al., 2007), the harbor porpoises in 

this study continued their buzzes after the capture event occurred. This 

extension of the buzz phase may not be physically possible for bats once they 

have actually begun to consume prey, since chewing and swallowing prey could 

prevent them from vocalizing. However, it has been suggested that certain bats' 

pre-capture buzzes continue beyond the last moment at which they would 

actually have time to receive and process returning-echo information (Melcon et 

al., 2007). In porpoises, the continuation of the buzz post-capture may also stem 

from a physiological limitation related to their pneumatic click production 

mechanism; they may not be able to terminate buzz production abruptly at a 

precise time. Alternately, continuing to buzz after capture may be adaptive, 
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allowing immediate re-localization of prey items that escape after nearly- 

successful capture attempts or facilitating post-capture pursuit of new, nearby 

prey items (for schooling prey like herring). 

Almost all of the porpoises' prey capture attempts were successful during 

our experimental trials, probably because of the lack of escape reactions in the 

prey. Consequently, my dataset is not suitable for comparing the post-buzz 

pause durations and click characteristics of successful and unsuccessful capture 

attempts. I did not analyze the frequency characteristics of the post-buzz clicks 

in detail, and it is possible that distortion and reverberation caused by recording 

clicks off-axis with a recorder in contact with the animal would obscure potential 

frequency spectrum-related indicators of capture success (Surlykke et ai, 2003). 

Nevertheless, my future plans for continued analysis of our dataset include 

attempts to identify possible acoustic cues indicating prey capture success. 

2.4.2 Click Rates 

In this study, I observed click rates of up to 640 clicks per second during 

echolocation buzzes, corresponding to an inter-click interval (ICI) of about 1.6 

msec.    The average peak click rate during a buzz was 321 clicks per second 

(3.1 msec ICI). These rates are consistent with previous observations of harbor 

porpoise buzzes (Verboom and Kastelein, 2004; Akamatsu era/., 2007). 

However, I consider them to be minimum estimates of the actual observed click 

rates, since many buzz clicks had levels near the lower detection limits of the tag; 

I therefore suspect that a significant number of additional, even quieter clicks 

went undetected during buzzes. 

During pre-buzz periods, the average click rate of the porpoises in this 

study was about 35 clicks per second, corresponding to an ICI of about 29 msec 

(Figs. 2.2-2.3). The mean ICI was relatively constant over time, decreasing 

slightly from about 39 msec 15 seconds before capture to about 26 msec just 

prior to initiation of the echolocation buzz (Fig. 2.3). Assuming that porpoises 
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wait for echoes from one click to arrive before producing the next click, the 

maximum distance inspected by clicks with 26-39 msec ICIs would be about 19- 

29 m (calculated by assuming that ICI = two-way travel time from source to 

target, with a sound speed of 1500 m/s; this method estimates a maximum 

inspected distance because it makes no time allowance for auditory processing 

between receipt of the returning echo and emission of the next click). This 19-29 

m maximum inspected range estimate makes sense given that the net pen in 

which the animals were enclosed during the experiments is about 20 m long. 

The average ICI observed in this study (29 msec) was very similar to the 

minimum ICI of 30 msec observed in Villadsgaard and colleagues' (2007) study 

of free-ranging harbor porpoises in Danish waters. ICIs of up to 200 msec were 

also observed in the Danish study. Thus, free-ranging animals may use longer 

ICIs to inspect somewhat more distant targets than the porpoises in my study; an 

ICI of 58 msec (the median observed by Villadsgaard et a/., 2007) would 

correspond to a maximum inspected distance of 43.5 m, and an ICI of 200 msec 

(the maximum observed by Villadsgaard et a/., 2007) would correspond to a 

maximum inspected distance of 150 m (calculated as above). If the assumption 

that inter-click interval is related to inspected range is correct, and assuming that 

porpoises do need some time to process echoes from one click before emitting 

the next, it seems likely that porpoises generally focus their echolocation on 

targets at ranges of less than 40m. 

For captive bottlenose dolphins echolocating on synthetic targets, inter- 

click interval increases as a function of dolphin-target range; it is equal to the 

two-way travel time between dolphin and target, plus a fixed lag time thought to 

be related to auditory processing (Au, 1993). I do not currently have data on 

porpoise-prey ranges for our prey capture experiments, so I cannot analyze the 

relationship between ICI and target range in detail. However, I note that the 

distance from the porpoises' start position to the prey capture location was 

approximately 18 m. If porpoises vary their ICI as a function of target range like 

61 



dolphins do, one would expect ICI to decrease by about 24 msec over the 15-20 

seconds between trainer cue and prey capture (2 x 18 m + 1500 m/sec = 0.024 

sec). This estimated decrease of 24 msec is almost double the 13 msec 

decrease observed in the mean data ICI (Fig. 2.3); in addition, the median data 

ICI shows a much smaller change of about 7 msec (Fig. 2.2). 

The above calculations, though very approximate, do not provide 

convincing evidence that porpoise inter-click intervals leading up to prey capture 

are timed to match the two-way travel time to target plus a fixed lag time. 

Previous studies with porpoises provide conflicting findings on this topic; while 

Verfuss and colleagues (2005) found that captive porpoises did reduce their ICIs 

as they neared an echolocation target during a navigation task, Teilmann and 

others (2002) found that they did not make similar adjustments during a target 

detection task. 

Given the large amount of scatter in my data and the small range 

differences considered in this study, it is very possible that the observed 

relationship between ICI and inferred prey range is not significant.  In other 

words, porpoise inter-click intervals may remain relatively constant as porpoise- 

prey range declines, then increase rapidly following buzz initiation. This pattern 

would match more closely with observations from free-ranging echolocating 

beaked whales and sperm whales. Those species have been found to produce 

regular clicks at a relatively constant ICI (which far exceeds the expected or 

measured two-way travel time to their prey) during the search and approach 

phases, then abruptly switch to a buzz phase during which lower-amplitude clicks 

are produced much more rapidly (Madsen etal., 2005).  However, unlike Madsen 

and colleagues' (2005) data for Blainville's beaked whales (Mesoplodon 

densirostris), our porpoise data do not indicate a clear distinction between buzz 

clicks and regular clicks in terms of either level or ICI (Figure 2.12). 
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On average, the porpoises initiated echolocation buzzes about half a 

second before prey capture, when they were within a body length or so of the 

prey fish. The click rate within the buzz generally increased rapidly and peaked 

around the time of prey capture. Given the small porpoise-target range variation 

over the course of the buzz, this rapid reduction in ICI (greater than 20 msec) 

cannot be explained solely as an adjustment to changes in the two-way travel 

time between porpoise and prey (less than 4 msec). The minimum ICI during 

buzzes (on average 3.1 msec) was much smaller than the estimated lag time for 

bottlenose dolphins (about 30 msec; Au, 1993). A rough estimate of porpoise lag 

time from our data, assuming an ICI of about 30-40 msec at a porpoise-prey 

range of about 10 m, would be slightly lower, about 15-20 msec - still much 

longer than the observed buzz ICIs. Assuming that the dolphin lag-time estimate 

is accurate and the lag time for porpoises is similar, our data suggest the 

possibility that porpoises may adjust their ICI to allow processing of one echo at 

a time during the search and approach phases, but process multiple echoes 

simultaneously during the terminal buzz phase. 

2.4.3 Click Levels 

My data indicate that porpoises reduce the amplitude of their clicks by 

about 12 dB during buzzes. While this observation matches the general trend 

observed in other free-ranging foraging toothed whales, other species display 

even greater reductions in click levels during buzzes; Blainville's beaked whale 

buzz clicks are 15-20 dB lower in amplitude than regular clicks (Madsen et al., 

2005), and sperm whale buzz clicks about 20 dB lower (Madsen et al., 2002b). 

The level of the lowest-amplitude clicks I was able to detect in the tag 

recordings was 117 dB re 1 uPa peak-to-peak (pp). Because the tag was 

attached to the animal and positioned directly behind the sound-generating 

apparatus, this level is of course not an on-axis source level; in fact, on-tag click 

levels are probably at least 40 dB less than the on-axis source levels of the same 
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clicks (Hansen, 2007).   At 117 dB re 1 uPa pp, the tag detection threshold was 

too high to detect all porpoise clicks; even so, that threshold was much lower 

than the detection threshold (136 dB re 1 uPa pp) of tags previously deployed on 

porpoises in a similar position (Akamatsu et a/., 2007). It is likely that many low- 

level clicks, especially buzz clicks, have gone undetected in tagging studies of 

porpoises to date (including the present study as well as those of Akamatsu and 

colleagues (2005; 2007)). In fact, I suspect that my data underestimate porpoise 

click level reductions during buzzes, and that many buzz clicks had amplitudes 

too low to be recorded on the tag and detected by the click detector. Since 

lower-level clicks tended to occur near the start and end of buzzes, failure to 

detect those lower-level clicks could also have led to error in my estimates of 

buzz start times, end times and durations. 

To address these shortcomings, I have increased the gain on the tag and 

repeated the prey capture experiments. Analysis of the resulting data should 

allow more accurate determination of buzz click rates and levels, as well as buzz 

start times, end times and durations. I also hope that the increased signal-to- 

noise ratio in the new dataset may render echoes from prey fish detectable in the 

tag recordings. Echo data would allow me to calculate porpoise-prey ranges, 

estimate prey detection distances, and investigate whether or not the porpoises 

can tolerate temporal overlap between outgoing clicks and echoes. Such 

investigations would greatly facilitate interspecific comparisons of echolocation 

by porpoises, other toothed whale species, and bats. 

My data also indicate that apparent click levels decrease as click rates 

increase (Figure 2.11). This result may simply reflect the fact that faster clicks 

during buzzes tend to be quieter than other clicks.  It is also possible that the 

porpoise click generator can output a fixed amount of acoustic energy per unit 

time, resulting in lower click levels at higher click rates. Acoustic power is 

proportional to the square of click amplitude. Therefore, if the hypothesis of 
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limited power output per unit time were correct, one would expect click level to 

increase with the square of ICI (up to a certain point, at which the inter-click time 

was sufficient for full recovery or "resetting" of the click production mechanism 

and all clicks could attain maximum level). Despite the large amount of scatter in 

my data, they do not contradict the hypothesis (Fig. 2.11). 

As discussed earlier, the porpoises in this study did not seem to vary their 

ICI as a function of range to target. If they did, though, ICI would be directly 

proportional to range. In that case, it might be possible to explain reductions in 

click level with ICI as transmit-side automatic gain control (AGC) to correct for 

transmission loss and stabilize returning echo levels. For echolocation on a 

single target, one would expect such AGC to result in click levels that increase 

according to 40log-i0(ICI) or 12 dB per doubling of ICI, a relationship that does not 

fit my data. 

An increase of 6 dB per doubling of ICI (20 log10(ICI)) is a better, but still 

relatively unconvincing, fit to the data (Fig. 2.11). A similar pattern, in which click 

source level increased by 6 dB per doubling of range, has been reported for 

three species of free-ranging toothed whales: Atlantic spotted dolphins Stenella 

frontalis, white-beaked dolphins Lagenorhynchus albirostris, and killer whales 

Orcinus orca (Au and Benoit-Bird, 2003). 

For bat species that do use transmit-side AGC, increases in outgoing 

signal level are also in the range of 6 dB per doubling of range (Hartley, 1992b; 

Hiryu et a/., 2007), resulting in relatively constant intensity incident on the 

echolocation target.  In conjunction with this transmit-side AGC, some bats 

employ receiver-side AGC, reducing their middle-ear sensitivity by about 4-7 dB 

per halving of target range (Kick and Simmons, 1984; Hartley, 1992a; Boonman 

and Jones, 2002). Together, transmit- and receiver-side AGC can maintain 

constant echo intensity at the level of the cochlea despite changes in bat-target 

range, which may simplify the bats' echo-processing task. 
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However, returning to the case of the harbor porpoise, experiments with a 

captive porpoise provided no evidence of receiver-side AGC (Beedholm et a/., 

2006). Without receiver-side AGC, increasing outgoing signal intensity by 6 dB 

per doubling of range would not be enough to maintain constant echo levels as 

porpoise-prey range varies. It remains unclear whether, or why, most 

echolocating animals prefer to maintain constant echo levels as they approach 

prey items; continued and comparative studies of AGC in bats and toothed 

whales may help clarify the matter. To explore this question further using my 

dataset, supplementing ICI data with estimates of porpoise-target ranges during 

the prey capture experiments will be critical. 

2.4.4 Comparison of Various Conditions 

There were no major differences in echolocation behavior between trials 

with and without eyecups; this finding suggests that visual information does not 

strongly influence echolocation click rates and levels.  However, porpoises took 

longer to capture prey when wearing eyecups, so visual input must play some 

role in prey capture behavior.  In trials without eyecups, porpoises seemed to 

produce slightly longer echolocation buzzes, while in trials with eyecups, they 

reduced their click levels sooner and more gradually leading up to the buzz (Fig. 

2.7). 

I observed a striking difference in click levels between the two animals that 

participated in the study; Sifs clicks had about 5-10 dB higher amplitude than 

Eigil's, and she also appeared to click faster than Eigil during buzzes.  It is 

possible that the increased buzz click rate observed during Sifs trials is due to 

the fact that her clicks were louder, and thus more of her buzz clicks were 

detectable above threshold levels. The large differences observed between Eigil 

and Sif highlight the potential for intraspecific variation in biosonar click rates and 

levels, and the need to include multiple animals in studies of echolocation 

behavior whenever possible. However, Sif is thought to have sustained hearing 
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damage in the past that caused her to increase her outgoing echolocation click 

levels (M. Wahlberg, pers. comm.). Consequently, the differences between her 

and Eigil may exceed the normal range of intraspecific variation; even if so, they 

provide a useful benchmark for the click level variations that may result from 

permanent or temporary differences in hearing sensitivity. 

Interestingly, I also observed differences in echolocation click levels 

between trials with herring and capelin; both porpoises' click amplitudes were 

about 3 dB higher for capelin than for herring (Figs. 2.9-2.10).  In my 

experiments, the acoustic target strength of capelin was measured to be -55dB, 

about 18dB less than that of herring (-37 dB; S. DeRuiter, data not shown). It is 

possible that the porpoises were increasing their click amplitude when 

echolocating for weaker targets to ensure that the echoes were detectable to 

them; however, a 3dB increase in outgoing click level would probably result in 

very modest gains in target detectability. For example, consider a wild porpoise 

producing echolocation clicks with source levels of 191 dB re 1 uPa peak-to-peak 

at 1 m (Villadsgaard et ai, 2007), equivalent to an energy flux density of 140 dB 

re 1 uPa2s (Kastelein et ai, 1999). Assume that the porpoise listens for returning 

echoes with a detection threshold of about 27 dB re 1 uPa2s (Kastelein et ai, 

1999). In a habitat where transmission loss can be approximated as spherical 

spreading plus absorption of 0.04 dB/m, the porpoise would be able to detect a 

herring with a target strength of -37 dB (Ona, 2003) at a range of up to 60 m; for 

a fish with target strength of -55 dB (18 dB less), that range would be reduced to 

only 25 m.  Increasing the source level of the outgoing click by 3 dB would render 

the lower-target-strength fish detectable at 29 m rather than 25 m, a very modest 

increase. (All above calculations were made by equating detection threshold 

with the sum of source level, two-way transmission loss, and target strength, then 

solving for range.) 
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While previous studies have indicated that many bats vary their signal 

amplitude to compensate for range-dependent transmission loss and maintain 

prey echoes at relatively constant levels (Hartley, 1992a; Surlykke and Kalko, 

2008), similar transmit-side automatic gain control to compensate for variations in 

prey target strength has not previously been observed (but see Au, 1993 for a 

brief discussion of the topic for dolphins).  In fact, Boonman and Jones (2002) 

found that while Daubenton's bats (Myotis daubentonii) varied their click intensity 

with target range, their signal amplitude increased by only about 4 dB when 

target strength was reduced by about 17-18 dB. The corresponding increase in 

signal amplitude for porpoises echolocating on herring was only about 3 dB. My 

results are thus consistent with those of Boonman and Jones (2002), who 

concluded that their bats did not adjust outgoing click amplitude to stabilize 

received echo levels. Since the difference in herring and capelin target strength 

is so much larger than the observed increase in click amplitude, it is unlikely that 

the porpoises were using transmit-side automatic gain control alone to keep echo 

levels from all prey constant.  If possible, quantifying echo levels in increased- 

gain tag data from recently completed prey capture experiments may shed 

further light on this issue. 
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Chapter 3. Transmission Loss in Porpoise Habitats 

3.1 Introduction 

Harbor porpoises (Phocoena phocoena) are small toothed whales that 

inhabit temperate and subarctic waters; like all toothed whale species 

investigated, they use echolocation for foraging and navigation. The click signals 

of porpoises are more narrow-band and higher in frequency than those of most 

larger odontocetes, and little is known about the behavior and echolocation 

strategies of porpoises in the wild (Au, 1993; Akamatsu et al., 2005; Akamatsu et 

a/., 2007). Porpoises live in coastal areas where fisheries are active, vessel 

traffic is intense, and marine construction (e.g., for offshore wind farms) may 

occur. Consequently, they face mortality from entanglement in bottom-set 

gillnets or other fishing gear (Read et al., 1993; Dawson et al., 1998; Bowen et 

al., 2001; Kaschner, 2003). Behavioral disruption or habitat exclusion due to 

anthropogenic noise may also threaten porpoise populations (Koschinski et al., 

2003; Kastelein era/., 2005b; Carstensen era/., 2006). 

There is very little information on how porpoises deploy their echolocation 

in the wild to forage and navigate, either in the presence or absence of fishing 

gear or disturbance.  However, estimating the range at which porpoises can 

detect prey items and other environmental objects (including obstacles such as 

fishing gear that they must avoid, or other features that might be used as 

navigational landmarks) is an integral part of studies of harbor porpoise biosonar; 

it is also a key to understanding obstacle detection and avoidance behavior 

relevant to bycatch reduction strategies (Au and Jones, 1991; Kastelein et al., 

2000; Mooney et al., 2004; Mooney et al., 2007). To predict the range at which a 

porpoise (or other echolocating whale) can detect an object using echolocation, 

one must measure or estimate 1) the source level of the outgoing click signal; 2) 

the minimum received echo level which is detectable by the echolocating animal 

(limited either by ambient noise levels or by the animal's auditory threshold); 3) 
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the acoustic target strength of the prey item or target of interest; and 4) the 

transmission loss of the signal as it travels from the source to the target and back 

again. 

Echolocation click source levels have been characterized for captive and 

wild harbor porpoises (Au etal., 1999; Villadsgaard etal., 2007), and for other 

free-ranging odontocete species including the bottlenose dolphin Tursiops 

truncatus (Au et al., 1974; Au, 1993; Au and Benoit-Bird, 2003b); the false killer 

whale Pseudorca crassidens and Risso's dolphin Grampus griseus (Madsen et 

al., 2004a); the pygmy killer whale Feresa attenuata (Madsen et al., 2004b); the 

white-beaked dolphin Lagenorhynchus albirostris (Rasmussen etal., 2002); the 

orca Orcinus orca (Au et al., 2004), and the sperm whale Physeter 

macrocephalus (Mohl et al., 2000; Mohl et al., 2003). Where comparison has 

been possible, click source levels of free-ranging animals have been 30-40 dB 

higher than those of captive animals in tanks (Au et al., 1974; Au and Benoit- 

Bird, 2003b; Madsen etal., 2004a; Villadsgaard etal., 2007). 

Hearing capabilities of harbor porpoises (Popov et al., 1986; Kastelein et 

al., 2002; Kastelein et al., 2005a) and several other species have also been 

tested experimentally (false killer whale (Thomas et al., 1988); finless porpoise 

Neophocaena phocaenoides asiaeorientalis (Popov et al., 2005); striped dolphin 

Stenella coeruleoalba (Kastelein et al., 2003); orca (Szymanski et al., 1999); 

tucuxi Sotalia fluviatilis guianensis (Sauerland and Dehnhardt, 1998); false killer 

whale (Yuen et al., 2005); Risso's dolphin Grampus griseus (Nachtigall et al., 

2005)) or predicted by anatomical or computational models (e.g., Ketten, 1997; 

Hemila et al., 2001). Whale hearing capabilities remain an area of ongoing 

research. 

Ocean noise levels have also been well-studied over broad frequency 

ranges and in a variety of environments and conditions (e.g., Wenz, 1962; Urick, 

1975; Medwin and Clay, 1998), so it may be possible to estimate a realistic range 
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of potential noise conditions in odontocete habitats based on the literature; 

alternatively, noise levels at a specific site can be measured readily. 

The target strength offish (reviewed in Medwin and Clay, 1998) and the 

acoustic reflectivity of other objects such as fishing gear (Au and Jones, 1991; 

Kastelein etal., 2000; Trippel era/., 2003) have also been studied, and both 

theoretical and empirical predictive models for target strength have been 

developed for many types offish (e.g., Rose, 1998; Ona, 2003; Reeder era/., 

2004). Although most of the target strength studies mentioned above describe 

the acoustic reflectivity of an object ensonified by narrow band sound pulses, 

target strength measurements of some fish species (Au and Benoit-Bird, 2003a; 

Benoit-Bird et a/., 2003; Au et a/., 2007) and acoustic reflectivity measurement for 

some fishing gear (Au and Jones, 1991; Kastelein et a/., 2000; Mooney et a/., 

2004; Mooney etal., 2007) have been made with short, click-like signals similar 

to toothed whale echolocation clicks. 

Finally, transmission loss of acoustic signals in the marine environment 

has been the subject of a great deal of theoretical and empirical study (Urick, 

1975; Jensen et a/., 1994).  In certain conditions, transmission loss can be simply 

described by spherical spreading law. Spherical spreading describes the 

reduction in acoustic intensity with range from a sound source in a lossless, 

homogeneous medium with no boundaries. In that case, total acoustic power 

must remain constant over time. Power is the product of intensity and area. 

Since the area over which the sound is distributed (the surface of a sphere) 

increases with the square of source-receiver range, sound intensity must 

decrease with the square of range; mathematically, in decibel notation, TL = 

WlogKifr2) = 20logi0(r) (Urick, 1975). A similar argument leads to the derivation 

of the cylindrical spreading law, TL = 10log10(r), for a lossless, homogeneous 

medium with parallel, perfectly reflective boundaries (Urick, 1975).  In more 

complex environments, transmission loss can generally be modeled successfully 
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using theoretically-derived computational acoustic propagation models as long as 

the environmental features (sound speed profile, bathymetry, bottom properties, 

etc.) and acoustic source characteristics (source level, frequency, and beam 

pattern) are well known (Jensen et al., 1994; Medwin and Clay, 1998). At high 

frequencies, including the frequencies of most whale echolocation clicks, 

attenuation due to sound absorption in the medium contributes significantly to the 

transmission loss. Absorption losses can be predicted according to well- 

established theoretical and empirical models (Schulkin and Marsh, 1962; Thorp, 

1965; 1967; Francois and Garrison, 1982a; b), and can generally be included in 

the computational propagation models mentioned earlier. 

As described in detail above, relatively accurate estimates or predictions 

of all necessary quantities are available for estimating the maximum echolocation 

detection ranges of harbor porpoises and many other odontocete species. Such 

estimates have been published for several species, including harbor porpoises 

(Au et al., 2007; Mooney et al., 2007; Villadsgaard et al., 2007), bottlenose 

dolphins (Au er al., 2007), orcas (Au et al., 2004), false killer whales and Risso's 

dolphins (Madsen et al., 2004a). These studies have used the best available 

estimates for outgoing click source levels, ambient noise, and hearing thresholds 

for click detection (in the rare cases where signal detection is not noise-limited). 

Most also use established, published estimates of target strength (although Au 

and colleagues (2007) point out that target strength measurements made using 

whale-like clicks are most appropriate for such studies, and were the first to apply 

them). However, all of the studies use a spherical spreading law with an 

attenuation term to describe transmission loss. The assumption that this type of 

transmission loss estimate can accurately describe transmission loss of 

echolocation clicks in toothed whale habitats has not been validated 

comprehensively, although Villadsgaard and colleagues (2007) did verify 

experimentally that, at their study site, spherical spreading with attenuation 
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estimated TL within 4 dB of observed data values at source-receiver ranges of 50 

m or less. 

Passive acoustic monitoring (PAM) with automatic click detection devices 

such as T-PODs porpoise detectors (Thomsen et ai, 2005) has become an 

increasingly common method for monitoring the presence and abundance of 

whales, especially harbor porpoises; T-PODs have been used both to study 

abundance patterns (Philpott et ai, 2007; Verfuss et ai, 2007) and to quantify 

changes in abundance in response to anthropogenic noise (Cox et ai, 2001; 

Culik era/., 2001; Koschinski etai, 2003; Carstensen era/., 2006; Leeney era/., 

2007).  Passive acoustic monitoring with devices like T-PODs provides data on 

the time and intensity of detected clicks, not spatial abundance data. 

Understanding transmission loss in porpoise habitats can play an important role 

in the interpretation of this data, since an estimate of TL is required to estimate 

the maximum distance at which a device can detect animals or to convert PAM 

data to a more conventional abundance measure such as spatial density of 

animals. Although such conversions are generally not attempted yet because 

data relating the number of porpoises present to the number of click trains 

detected are not currently available (Carstensen et ai, 2006), they are likely to 

become more widespread in the future. A test of the assumption that spherical 

spreading with attenuation accurately describes transmission loss in porpoise 

habitats is thus critical for accurate interpretation of passive acoustic monitoring 

data. 

The purpose of this paper is to test the hypothesis that a spherical 

spreading law with attenuation can accurately predict the transmission loss of 

harbor porpoise-like clicks in porpoise habitats, and to compare the performance 

of the spreading law/attenuation model with that of a more sophisticated acoustic 

propagation model. To accomplish that goal, I measured the transmission loss of 
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porpoise-like clicks in porpoise habitats in Canada and Denmark, and I compared 

the measured values to those predicted by both models. 

3.2 Methods 

3.2.1 Field Sites 

Field measurements of transmission loss of porpoise-like clicks we made 

in two areas: near Grand Manan Island in New Brunswick, Canada; and in 

Aarhus Bay near Aarhus, Denmark. Figures 3.1-3.3 show maps show maps of 

the sites near Grand Manan, and Figures 3.4-3.5 show maps of the Danish 

experiment site. All of the sites are within known porpoise habitat; that is, 

porpoises are commonly sighted at all the experimental locations. 
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Figure 3.1. Large-scale map of the experiment location near Grand Manan 

Island, NB, Canada. Black rectangle shows area mapped in Figure 3.2. 
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Figure 3.2. Map of Grand Manan Island. Red dots indicate sites of transmission 

loss experiments. Blue dots indicate the collection locations of sediment 

samples (Paskevich et al. 2001, Poppe et al. 2001) used to help establish the 

bottom properties at the experiment sites for acoustic propagation modeling. 

Black rectangle indicates the area mapped in Figure 3.3. 
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Figure 3.3. Detailed map of the sites of transmission loss experiments (indicated 

by red dots) near Grand Manan Island. 
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Figure 3.4. Map of the experiment location (red dot) in Aarhus Bay, Denmark. 

Black rectangle indicated the area mapped in Figure 3.5. 
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Figure 3.5. Map of the experiment location (red dot) in Aarhus Bay, Denmark. 
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In Grand Manan, experiments 1-7 were carried out at 6 sites between 8 

August and 13 August 2006 (see Figure 3.3 for exact locations of each site; 

experiments 5-6 were done on the same day at the same site). In Aarhus Bay, 

measurements were made at the same site in the middle of the bay on 5 

September 2006, 29 November 2006, and 16 April 2007 (I will refer to these 

experiments as experiments 8-10). Table 3.1 gives the exact date of each 

experiment. 

Table 3.1. Dates and locations of transmission loss experiments. 

Experiment 

Number 

Date Location 

1 8 August 2006 Grand Manan, NB, Canada 

2 10 August 2006 Grand Manan, NB, Canada 

3 11 August 2006 Grand Manan, NB, Canada 

4 11 August 2006 Grand Manan, NB, Canada 

5 12 August 2006 Grand Manan, NB, Canada 

6 12 August 2006 Grand Manan, NB, Canada 

7 13 August 2006 Grand Manan, NB, Canada 

8 5 September 2006 Aarhus Bay, Denmark 

9 29 November 

2006 

Aarhus Bay, Denmark 

10 14 April 2007 Aarhus Bay, Denmark 

CTD measurements were taken in conjunction with each experiment to 

allow determination of a sound speed profile for each site, and echosounder 

measurements were used to characterize the bathymetry at each site. Figures 

3.6-3.14 show the sound speed profiles calculated from the CTD data for 

experiments 1-10. The sound speed profiles for experiments 1, 7, and 9 (Figs. 6, 

11 and 13) show nearly isovelocity water columns with minimal variation in sound 
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speed with depth. In contrast, experiment sites 2-6 and 10 (Figs. 3.7-3.10, 3.14) 

have downward-refracting sound speed profiles, and site 8 (Fig. 3.12) has a 

lower-velocity sound channel between about 6-12 meters depth. All sites had 

relatively flat bathymetry, with a maximum downward slope of about three 

degrees at sites 5-6. Figure 3.15 shows the bathymetry at the sites of 

experiments 1-7.   Bathymetry plots are not shown for the sites in Aarhus bay, 

since they had flat bottoms with water depths of about 15 m (experiment 8), 12 m 

(experiment 9), and 13 m (experiment 10). 

1460   1470   1480   1490   1500   1510 
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1520 

Figure 3.6. Sound speed profile for experiment 1. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.7. Sound speed profile for experiment 2. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.8. Sound speed profile for experiment 3. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.9. Sound speed profile for experiment 4. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.10. Sound speed profile for experiments 5-6. The black dots indicate 

raw CTD data, and the solid black line indicates the smoothed sound speed 

profile used for acoustic modeling. 
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Figure 3.11. Sound speed profile for experiment 7. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.12. Sound speed profile for experiment 8. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.13. Sound speed profile for experiment 9. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 
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Figure 3.14. Sound speed profile for experiment 10. The black dots indicate raw 

CTD data, and the solid black line indicates the smoothed sound speed profile 

used for acoustic modeling. 

93 



o A _ o B 
E, 
n 
Q. Q. 

Q Q 
50     50    100    150    200     50     50    100    150    200 

Range (m) Q Range (m) 

?  C ?  D 
x: ^^ .c 

Q Q 
5°0     50    100    150    200     5°0     50    100    150    200 

0 

E 

Range(m) Range(m) 

a. 
a> 
D 

200    300    400     5 0     50    100    150    200 
Range(m) Range(m) 

Figure 3.15. Bathymetry at the seven transmission loss experiment sites near 

Grand Manan Island.  Panel A corresponds to experiment 1, B to 2, C to 3, D to 

4, E to 5 (solid line) and 6 (dotted line), and F to 7.  (Bathymetry is not shown for 

experiment sites in Denmark, which had flat bottoms with depths of 15.4m 

(experiment 8), 11.6m (experiment 9), and 12.8m (experiment 10).) 

No attempts were made to measure bottom properties during my 

experiments, but data on bottom properties near my experiment sites are 

available from several sources.  Paskevich et al. (2001) and Poppe et al. (2005) 

provide sediment grain-size data for sites within about 15 km of the experimental 

sites, but further from the coast of Grand Manan. Figure 3.2 shows the locations 

of their sediment samples, which were mainly silty clay with occasional small 

amounts of sand or shells. The sediments in Aarhus Bay are also mainly silty 

clay or sandy clay (Lund-Hansen et al., 2002; Roy et al., 2005). 
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3.2.2. Audio Data Collection 

Experimental Setup 

The experimental setup for transmission loss measurements required two 

boats: one to transmit the signals from a fixed location, and one to receive the 

signals at a variety of ranges. The transmitting boat was anchored or tied up to a 

fixed object, and the transmitter was deployed over the side of the transmit boat, 

continuously transmitting synthetic porpoise clicks. The receiving boat was 

attached to the transmitting boat by a line. The length of the line was adjusted to 

position the receiving boat at stations 5 m, 10 m, 25 m, 50 m, 100 m, 150 m 

(experiments 7-10 only), 200 m (experiments 1-7 only), and 350 m (experiments 

5-6 only) from the transmitter. Source-receiver ranges were verified by radar 

when possible. At each station, the receiving boat made one- to five-minute 

recordings of the transmitted signal on two hydrophones deployed at 3 m and 5 

m depth. 

Transmitted signal 

The transmitted signal in all experiments was a series of synthetic 

porpoise clicks; each click consisted of 11 cycles (experiments 1-8) or 15 cycles 

(experiments 9-10) of a 135 kHz pure tone, with a 10 msec pause after each 

synthetic click. The duration of each synthetic click was about 82 psec (11 

cycles) or 111 psec (15 cycles). The duration and frequency of the synthetic 

clicks were similar to the duration (about 75-250 psec) and peak frequency (120- 

140 kHz) of typical harbor porpoise echolocation clicks (Au, 1993; Au et a/., 

1999). We used an Agilent 33220A signal generator (Agilent Technologies, 

Santa Clara, California) to produce the clicks at a peak-peak amplitude of 1 V, 

amplified the signal by 46 dB using a custom-built amplifier for a total amplitude 

of about 200 V peak-peak, and transmitted them into the water with a Bruel & 

Kjaer 8105 spherical hydrophone (Bruel & Kjaer Sound & Vibration Measurement 

A/S, Naerum, Denmark; transmit sensitivity 145 dB relative to 1pPa/V @ 1m) 
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deployed at either 5 m depth (experiments 1-7, 10) or 3 m depth (experiments 8- 

9).  In contrast to a porpoise, which produces directional echolocation clicks with 

a -10dB beam width of about 20 degrees in the vertical plane (Au et a/., 1999), 

our transducer was nearly omnidirectional. The measured source level of the 

transmissions was 184 dB re 1 pPa peak-peak @ 1 m, which is within the 

expected range for wild harbor porpoise echolocation clicks (178-205 dB re 1uPa 

peak-peak @ 1 m (Villadsgaard etai, 2007)). 

Sound Recordings 

Grand Manan (experiments 1-7) 

At each station, 1- to 5-minute audio recordings of the signal were 

collected with hydrophones deployed at 3 m and 5 m depth. The signal at 3 m 

depth was recorded on a Reson TC4034 hydrophone (Reson, 

Slangerup, Denmark; receiving sensitivity -220 dB relative to 1V/uPa at 130 kHz), 

amplified either 40 or 60 dB with a custom-built amplifier and band-pass filtered 

with an analog filter between 1.7 (1 pole) and 160 kHz (4 pole). The signal at 5 

m depth was recorded on a Reson TC4014 hydrophone (receiving sensitivity - 

186 dB relative to 1 V/uPa), amplified 32 dB with an etec amplifier (etec, 

Frederiksvaerk, Denmark) and high-pass filtered with an analog filter (1 pole) at 1 

kHz. All signals from the hydrophones were digitized at 333 kHz sampling rate 

(16 bits resolution) on a Wavebook 516E analog to digital converter (lOtech, 

Cleveland, Ohio), and the resulting files were saved on a laptop computer.  In 

order to maximize resolution in the recordings, amplification on the 3 m 

hydrophone was varied between 40 and 60 dB, and the clip level of the digital 

recordings was varied between 0.2 and 10 V peak-peak. 

Aarhus Bay (experiments 8-10) 

At each station, 1- to 5-minute audio recordings of the signal were 

collected with hydrophones deployed at 3 m and 5 m depth. Both channels were 
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recorded on Reson TC4034 hydrophones. In order to maximize resolution in the 

recordings, amplification on the hydrophones was varied between 40 and 60 dB. 

Signals from the hydrophones were filtered with an analog band-pass filter 

between 1 (1 pole) and 200 kHz (4 pole) and digitized at 500kHz sampling rate 

(12 bits resolution) on an ADLINK analog-digital converter (ADLINK Technology 

Inc., Taipei, Taiwan); the resulting data files were saved to a laptop computer. 

The peak-peak clip level of the digital recordings was 10V (experiment 8) or 4 V 

(experiments 9-10). 

3.2.3 Data Processing 

The data wave files from each station were band-pass filtered between 100-160 

kHz with a 4th order Butterworth filter in Adobe Audition (Adobe, San Jose, 

California). Using custom-written scripts in Matlab (The MathWorks, Natick, 

Massachusetts), I applied an envelope-based click detector to extract 100 clicks 

from each file and calculate the peak-peak amplitude, or received level (RL), of 

each click. The click detection routine outputs the peak RL of the highest 

amplitude acoustic arrival only (and not the combined level of several multipath 

arrivals), as long as the delay in arrival time between the arrivals is greater than 

about 100 usec and thus the arrivals do not overlap in time. I subtracted the 

measured RLs from the transmitter source level, 184 dB re 1uPa peak-peak, to 

obtain the transmission loss of each click. I recorded the mean, minimum, and 

maximum transmission loss among the 100 measured clicks at each station for 

comparison with model predictions. 

3.2.4 Transmission Loss Predictions: Spreading Law Calculations 

The first model I used to predict transmission loss (TL) was a spherical 

spreading law (TL = 20logi0(r)) with attenuation. At high frequencies like the 135 

kHz considered in my experiments, absorption also contributes significantly to 

the transmission loss, so I included an additional absorption loss of 0.04 dB/m 

(calculated according to Francois and Garrison (1982a; b)) in the transmission 
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loss calculation. Therefore, for each source-receiver range r (in meters), I 

calculated the transmission loss TL in decibels according to TL = 20log10(r) + 

0.04r. I expected this spreading law/attenuation TL approximation to be accurate 

only in areas where the sound speed was relatively homogeneous and the sound 

did not interact with the bottom or the sea surface before arriving at the receiver. 

Because the transmitted signal was very short, one would predict those 

conditions to hold unless receiver depth was very shallow or source-receiver 

range was large (Madsen and Wahlberg, 2007). 

3.2.5 Transmission Loss Predictions: Bellhop Acoustic Propagation Model 

I also applied an acoustic propagation model, which can take into account 

the sound speed profile, bathymetry, and bottom properties as well as multipath 

acoustic propagation, to predict transmission loss at each experiment site. 

Because of the high frequency of the sound source in my experiments, I chose 

Bellhop, a ray-tracing propagation model written by Michael Porter, for these 

predictions (Porter and Bucker, 1987).  I used the AcTUP Matlab front-end, 

written by Amos Maggi and Alec Duncan and available at 

http://www.cmst.curtin.edu.au/products/actoolbox/, to interface with Bellhop. 

Model inputs included the source and receiver depths, sound speed profiles, and 

bathymetry of the experimental sites (shown in Figures 3.6-3.15), as well as 

attenuation in the water column calculated according to Francois and Garrison 

(1982a; b). I did not gather data on the bottom properties at each site, but as 

noted earlier, published data indicate that all my experimental sites are 

dominated by silty clay sediments. In this sediment type, the ratio of sound 

speed in the surface sediments to sound speed in the water overlying the 

sediments is generally about 0.984 (Jackson and Richardson, 2007).  I combined 

that ratio with the sound speed at the base of the sound speed profile to calculate 

a sediment sound speed for each of my experimental sites; I then used 

Hamilton's (1978) equations to estimate sediment density.  Finally, following 

Jackson and Richardson (2007), I estimated bottom attenuation in my silty clay 
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sediments to be about 0.45 dB per wavelength. I used the above values to 

define an isovelocity bottom layer for each of my experiment sites. 

Using the inputs described above, I carried out Bellhop model runs 

specific to each experiment site to determine the incoherent transmission loss 

and arrival-time delay of each arrival at the appropriate receiver depth/range 

locations. I used the model output to calculate two transmission loss estimates 

for each combination of experiment sites and receiver stations. The first, which I 

will call single-arrival TL, included only the transmission loss of the single 

highest-amplitude arrival at the receiver (generally the first, direct arrival). The 

second, which I will call total TL, summed all arrivals at the receiver incoherently. 

Although the total TL estimate theoretically includes all multipath arrivals at the 

receiver, in the cases I considered, most of the later arrivals had very high 

transmission loss, so only the first few arrivals had significant impacts on the total 

TL value.  I expected the single-arrival TL estimate to match the data well 

whenever arrivals did not overlap in time and I was able to accurately determine 

the received level of the first arrival in the data; on the other hand, I expected the 

second estimate to be more accurate in cases where temporal overlap of arrivals 

did occur. 

3.2.6 Comparison of TL data and predictions 

I used two measures to compare our observed data TL with the spreading 

law and Bellhop model predictions. First, I simply calculated the prediction error 

(for each station in each experiment) by subtracting the data TL from the 

predicted TL. Second, I calculated a root-mean-squared-error (RMSE) value for 

each experiment and for the set of 10 experiments according to RMSE = 

V(mean(TLpredicteci - TLdata)2)- For RMSE calculations, the error values in dB 

(TLpredicted - TLdata) were converted to linear units, then the resulting RMSE 

values were converted back into dB. 
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3.3 Results 

3.3.1. Field Data 

For most of my experiments, both Bellhop model output and data 

inspection confirmed that transmission loss increased with range, the first arrival 

at each receiver had the highest peak-peak amplitude, and it did not overlap in 

time with other arrivals; therefore, in most cases I compared data TL with 

spreading law TL and Bellhop single-arrival TL (Figures 3.16-3.19, 3.22-3.24). 

For experiments 5, 6, and 10, however, I found that the highest-amplitude 

recorded click was often not the first arrival, but a later arrival that appeared to be 

composed of several overlapping arrivals.  I observed this phenomenon at 

source-receiver ranges as short as 10 m (experiment 5; 25 m for experiment 6 

and 50 m for experiment 10). As an example, Figure 3.26 shows data from 

experiment 10 for a receiver depth of 3m and a source-receiver range of 50m. 

The figure includes the waveforms of received arrivals from 100 clicks, as well as 

the results of a pulse-compression analysis indicating that the largest peak in the 

data waveform is actually composed of several overlapping arrivals. I also noted 

that, in experiments 5-6 and 10, transmission loss did not increase as smoothly 

with range as in the other experiments. Given those observations, I expected 

that multipath propagation and water-column refraction would significantly affect 

the measured transmission loss for experiments 5, 6 and 10. Therefore, for 

those experiments, I compared the data TL with spreading law TL and Bellhop 

total TL (Figures 3.20-3.21, 3.25). 
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Figure 3.16. Measured and modeled transmission loss as a function of range for 

experiment 1. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.17. Measured and modeled transmission loss as a function of range for 

experiment 2. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.18. Measured and modeled transmission loss as a function of range for 

experiment 3. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.19. Measured and modeled transmission loss as a function of range for 

experiment 4. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.20. Measured and modeled transmission loss as a function of range for 

experiment 5. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (total transmission loss; blue for 3m receiver depth, 

green for 5m receiver depth). 
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Figure 3.21. Measured and modeled transmission loss as a function of range for 

experiment 6. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (total transmission loss; blue for 3m receiver depth, 

green for 5m receiver depth). 
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Figure 3.22. Measured and modeled transmission loss as a function of range for 

experiment 7. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.23. Measured and modeled transmission loss as a function of range for 

experiment 8. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.24. Measured and modeled transmission loss as a function of range for 

experiment 9. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (single-arrival transmission loss; blue for 3m receiver 

depth, green for 5m receiver depth). 
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Figure 3.25.  Measured and modeled transmission loss as a function of range for 

experiment 10. Blue circles show data collected at 3m receiver depth (zr = 3m), 

and green circles show data collected at 5m receiver depth (zr = 5m). Error bars 

on data points indicate minimum and maximum observed values. The black 

trace is the transmission loss predicted by a spherical spreading model with 

attenuation. The colored traces show transmission loss predicted by the Bellhop 

acoustic propagation model (total transmission loss; blue for 3m receiver depth, 

green for 5m receiver depth). 
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Figure 3.26. This figure contains data from experiment 10, for a receiver depth of 

3 m and a source-receiver range of 50 m. Top panel: Received signal 

waveforms from 100 outgoing clicks. (The position of 0 on the time axis is 

arbitrary, since the transmitter and receivers were not time synchronized.) 

Bottom panel: results of pulse compression, generated by applying a matched 

filter (15 cycles of a 135 kHz signal sampled at 500 kHz) to the received signal 

waveforms. Black arrows on the upper x axis indicate Bellhop-predicted arrival 

times for the first (direct), second (surface reflected), third (bottom reflected), and 

fourth (bottom then surface reflected) acoustic arrivals. In this particular case, 

Bellhop does not predict the observed pattern of multiple arrivals around the time 

of the second, surface reflected arrival; since the arrival delay and amplitude of 

the additional arrivals varies gradually over time, I suspect they are from some 

scattering object moving between the source and receiver. 
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3.3.2. Comparison of Measured and Modeled Transmission Loss 

Figures 3.27-3.29 summarize my results regarding the relative accuracy of 

the spreading law and Bellhop TL predictions. Figure 3.27, which plots the error 

of both types of TL prediction as a function of source-receiver range, shows that 

the prediction error did tend to increase with range. However, the error points 

remain relatively evenly scattered around zero at all ranges, indicating that 

neither model has a tendency to consistently over- or under-estimate TL as 

range increases. Error is plotted separately for each experiment in Figure 3.28, 

and Figure 3.29 shows the RMSE for each experiment. The two plots show that 

both models predicted TL quite accurately (errors not exceeding 6 dB, RMSE 

less than 3 dB) for experiments 3 and 7-9 and somewhat accurately for 

experiments 1-2 and 4 (errors not exceeding 10 dB, RMSE less than 5 dB). 

They both performed poorly for experiment 6, though the spreading law model 

performed somewhat better than the Bellhop model. The spreading law also 

performed well for experiment 5, where the Bellhop model performed less well. 

However, for experiment 10, the Bellhop model performed accurately while the 

spreading law did not. According to Figure 3.29, The RMSE for the whole set of 

ten experiments was between 3-4 dB for both the spreading law prediction and 

the Bellhop model, with the spreading law predictions performing slightly better 

than the Bellhop model predictions. 
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Figure 3.27. Error of the Bellhop and spherical spreading models as a function of 

range. Asterisks mark data points from Grand Manan experiments (experiments 

1-7), and circles mark datapoints from Danish experiments (experiments 8-10). 

Black asterisks and circles show the error of the spherical spreading/attenuation 

model, while red asterisks and circles show the error of the Bellhop model. 
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Figure 3.28. Error of the Bellhop and spherical spreading models by experiment. 

Data are shown for both Grand Manan experiments (experiments 1-7) and 

Danish experiments (experiments 8-10). One data point is shown for each 

source-receiver range. Black circles show the error of the spherical 

spreading/attenuation model, while red circles show the error of the Bellhop 

model. 
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Figure 3.29. Comparison of the accuracy of the Bellhop and spherical spreading 

transmission loss predictions. For each experiment and each model, we 

calculated the RMSE between mean observed transmission loss and model- 

predicted transmission loss. White bars show the RMSE of the Bellhop model, 

while black bars show the RMSE of the spreading/attenuation model. (RMSE 

was averaged over all ranges and over both 3m and 5m receiver depths for each 

experiment. To calculate the RMSE, we calculated error (in dB) at each range 

and receiver depth, converted the error values to linear units, calculated RMSE, 

and finally converted back to dB.) 

3.4 Discussion 

Both of the modeling approaches I tried were able to predict transmission 

loss with overall RMS error of less than about 4 dB. I consider this to be 

relatively good model performance overall, and would not necessarily expect a 

perfect match between data and model, as there were several potential sources 

of error and inaccuracy in my dataset.  First, I estimate that error in the 

measurements of source-receiver range at each station could have been off by 
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as much as 10%, especially at the longer ranges, due to the effects of wind and 

currents on the rope linking the transmit and receive boats. Second, especially 

at Grand Manan where tidal currents are very strong, the source and receiver 

depths may be slightly inaccurate because the hydrophone cables were not 

hanging exactly vertically. 

In this paper, I have compared Bellhop model predictions of transmission 

loss with a simple spherical spreading law with attenuation. This spreading law 

is the one most commonly applied in predictions of transmission loss related to 

marine mammal echolocation and communication, which is why I chose it.  In 

some cases, it might be more accurate to invoke a hybrid spherical/cylindrical 

spreading law, such as the following: at short ranges, transmission loss 

increases as the square of range (spherical spreading); as range increases to the 

point where the sound could be expected to interact with the surface and bottom, 

a transition from spherical spreading to cylindrical spreading (in which TL 

increases linearly with range) occurs (Urick, 1975).  I chose not to include such a 

model in this analysis for simplicity, given that most of the arrivals I considered 

did not interact with the surface or bottom (so spherical spreading did not 

systematically overestimate TL at larger ranges). 

At the sites I studied, the spherical spreading law with attenuation was 

able to predict transmission loss with an average error of just over 3 dB at 

source-receiver ranges up to 325 m, with less error at ranges of 50 m or less 

(Fig. 3.27). This result makes sense given the very short duration of the signal I 

used and the methods I used to calculate transmission loss from the data. I 

quantified the level of only the highest-amplitude arrival at each station. The 

highest-amplitude arrival was generally a direct (not surface- or bottom- 

interacting) arrival that underwent minimal refraction in the water column, in 

which case most of the assumptions underlying the spreading law assumption 

were upheld and the spreading law could accurately predict transmission loss for 
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that arrival. In addition, for the sites and ranges I considered, the direct arrival 

did not overlap temporally with any other arrivals, so multipath propagation and 

surface/bottom interactions did not affect its transmission loss. 

The results of this study should be relevant to estimation of porpoise 

communication ranges and echolocation detection ranges as long as the set of 

source-receiver ranges I considered match the distances over which porpoises 

actually communicate and echolocate. Direct observations of such distances 

have not been made, but it is possible to calculate rough estimates as follows. 

Consider a porpoise producing echolocation clicks with source levels of 

191 dB re 1 uPa peak-to-peak at 1 m (Villadsgaard era/., 2007), equivalent to an 

energy flux density of 140 dB re 1 uPa2s (Kastelein et ai, 1999). Assume that 

the porpoise echolocates on a herring with a target strength of -37 dB (Ona, 

2003), and listens for returning echoes with a detection threshold of about 27 dB 

re 1 uPa2s (Kastelein et ai, 1999). Echoes with one-way transmission loss of 38 

dB or less would be detectable to the porpoise (calculated according to received 

level = detection threshold = source level - 2(one-way transmission loss) + target 

strength). At the sites examined in this study, transmission losses first exceeded 

38 dB at ranges of 50 or 100 m (Figs. 3.16-3.25), with observed losses of less 

than 38 dB at a range of 150 m in one case (Fig. 3.25). 

For a similar calculation of communication call detection ranges, assume 

that the threshold for detection of communication sounds is the same as that for 

echoes (27 dB re 1 uPa2s (Kastelein et a/., 1999)), and that the source level of 

communication clicks is about 180 dB re 1 uPa peak-to-peak at 1 m (Clausen et 

ai, 2008), equivalent to 129 dB re 1 uPa2s (Kastelein etai, 1999). In that case, 

communication sounds with transmission losses of 102 dB or less would be 

detectable to conspecifics (calculated according to received level = detection 

threshold = source level - transmission loss). 102 dB is much higher than the 

largest transmission loss value observed in the current study (61 dB), indicating 
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that porpoises can detect conspecific calls at the ranges considered in this study 

(5-325 m) and greater ranges. 

Previous work has shown that click source levels of free-ranging 

porpoises average 191 dB re 1 uPa peak-to-peak @ 1 m (Villadsgaard et a/., 

2007), and that T-POD porpoise detectors can detect porpoise clicks at levels as 

low as 114-123 dB re 1 uPa peak-equivalent RMS (Kyhn, 2006), or 123-132 dB 

re 1 uPa peak-to-peak. Given those values, on-axis porpoise clicks with 

transmission loss on the order of about 68 dB may be detectable on T-PODs. 

Off-axis clicks with transmission loss as great as about 28 dB may be detectable, 

since off-axis click source levels can be upwards of 40 dB lower than those of on- 

axis clicks (Hansen, 2007). Transmission losses on the order of 30-70 dB are 

within or slightly greater than the range measured and modeled in this study. At 

the study sites, measured transmission loss first exceeded 28 dB at 25 or 50 m 

range, and I never measured transmission loss of more than 68 dB (at maximum 

ranges of 100-325m). The results of my experiments therefore suggest that, in 

areas similar to my study sites, using a spreading law-based model of 

transmission loss in T-POD detection range estimates should result in relatively 

low error on average for off-axis clicks detected at ranges of 50m or less (Fig. 

3.27). For on-axis clicks, which are likely to be detected at much greater ranges, 

error in spreading-law-based calculations is likely to be greater (Fig. 3.27). 

It is important to note that in some particular cases, spreading-law-based 

transmission loss estimates may not perform well.   The spherical spreading law 

did not predict transmission loss as accurately for experiment 10, while the 

Bellhop model was able to do so. I believe that the spreading law prediction 

failed because the loudest arrivals in the experiment 10 data were not always the 

first, direct arrivals; often a subsequent arrival peak comprised of several 

overlapping arrivals was louder. In addition, multiple ray paths pass through a 

focus near the receiver at 5 m depth and 150 m range (Figure 3.30), significantly 
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reducing the transmission loss at that location. In this case, it was unsurprising 

that the Bellhop model (which accounts for multipath propagation and water 

column refraction) outperformed the spreading law calculation (which does not). 

The spreading law model cannot be relied upon in cases such as experiment 10, 

where surface/bottom interactions and/or refraction in the water column 

significantly affect transmission loss between the source and the receiver. 

150 200 
Range (m) 

350 

Figure 3.30. Bellhop ray trace output for the experiment 10 site. For clarity, only 

rays with launch angles between +/- 4 degrees from the horizontal are shown. 

Some rays pass through a focus at about 5 m depth and 150 m range. 

One might argue that surface and bottom interacting propagation paths 

are unlikely to influence the transmission loss of real porpoise clicks because 

porpoises, unlike the transducer used in our experiments, produce highly 

directional clicks with a    -10 dB beam width of about 20 degrees in the vertical 

plane (Au et a/., 1999). It is likely that, given this narrower beam and given the 

porpoise's ability to scan and point its sonar in a desired direction, the amount of 

acoustic energy in higher-launch-angle, surface- and bottom-interacting arrivals 
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would be attenuated and the direct arrival would dominate.  However, given the 

porpoise beam width, this reduction would only occur at relatively short source- 

receiver ranges. For example, Figure 3.31 shows a Bellhop ray trace for a 

porpoise-like source (transmitting a 135 kHz signal at launch angles between -20 

and 20 degrees from the horizontal) at 5 m depth at the experiment 10 site. In 

that case, surface- and bottom-interacting arrivals will reach receivers at 3 and 5 

m depth at source-receiver ranges of 50 m or less. 

10 20 30 40 
Source-Receiver Range (m) 

50 

Figure 3.31.  Bellhop ray trace output for a porpoise-like source (transmitting a 

135 kHz signal at launch angles between -20 and 20 degrees from the 

horizontal) at the experiment 10 site. Grey traces show all the ray paths, while 

black traces show eigenrays between the source and receivers at 50 m range 

and 3 or 5 m depth. 

The experiment 10 case also illustrates that refraction in the water column 

can strongly affect transmission loss in some cases; in experiment 10, a 

minimum in the sound speed profile at around 5 m depth channeled and focused 

the sound and resulted in reduced transmission loss at certain ranges and 
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depths (including the receiver at 150 m range, 5 m depth; Figs. 3.14 and 3.30). 

Porpoises may be able to exploit such sound channels to increase the range at 

which they can detect prey or other targets with their echolocation, or to increase 

the active space of their communication calls. For example, assume that 

communication calls remain detectable until transmission loss exceeds 102 dB 

(see earlier calculation of communication call detection ranges). In a habitat 

where transmission loss can be approximated by a spherical spreading law with 

attenuation, the active space of an on-axis porpoise communication call would be 

about 1 km or 4.2 km3. In the same situation, an off-axis call with 40 dB lower 

source level would have an active space of about 300m or 0.1 km3. By taking 

advantage of a sound channel like the one at the experiment 10 site, porpoises 

could dramatically increase their active space: the active space of an on-axis call 

could increase to 1.5 km or 14 km3, and that of an off-axis call to 600 m or 0.9 

km3 (calculated using Bellhop output transmission loss for the experiment 10 

site). Future studies could test the hypothesis that porpoises exploit sound 

channels for communication by looking for a relationship between sound-speed 

profiles and the depth distribution of porpoise acoustic activity1. 

Variability in transmission loss as a function of depth also has implications 

for passive acoustic monitoring, since in a habitat where such variation occurs, 

detection probabilities and distances will vary with animal depth and detector 

depth. For example, assuming that T-PODs can detect porpoise clicks that 

undergo transmission loss of 68 dB or less (see earlier calculations), and 

assuming that spherical spreading with attenuation accurately estimates 

1 In any habitat where sound channels were present, such a study would have to take into 
account the following: porpoises clicks produced in a sound channel would likely be detectable at 
greater ranges, so the amount of acoustic activity in the channel might appear to be greater even 
if porpoise sound production depths were randomly distributed. 

2 If the whale is in a certain state;', it will remain in that state for a certain "waiting time" before 
changing to the next state; each observed waiting time is generally assumed to be a random 
sample from a state-specific probability distribution. 

3 The -3dB bandwidth of a porpoise click is about 15 kHz (Au et al. 1999, Villadsgaard et al. 
2007). In absolute terms, this bandwidth is not dramatically different from the -3dB bandwidth of 
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transmission loss, one would expect a T-POD to detect porpoises over an area of 

0.5 km2. However, in a habitat like the experiment 10 site with a sound channel, 

a T-POD in the sound channel would actually be able to detect porpoises in the 

sound channel over an area of 1.5 km2 (area estimate calculated using Bellhop 

output for the experiment 10 site). If not accounted for, variability of this 

magnitude could easily result in very large errors in estimates of animal density. 

Therefore, variability in transmission loss as a function of depth should be 

considered when selecting detector deployment depths and reviewing passive 

acoustic monitoring data. 

Neither the spherical spreading law predictions nor the Bellhop model 

predictions were particularly accurate for experiments 5 and 6; they were 

particularly poor for experiment 6, especially at longer ranges.  I believe that the 

spreading law model performed poorly because multipath propagation and 

surface/bottom interactions played an important role in determining the 

transmission loss, as was the case for experiment 10. However, for experiments 

5-6, the Bellhop model predictions were also inaccurate. I suspect that the 

environment model we used as Bellhop input was incomplete for the experiment 

5-6 site. Specifically, I suspect that the area around the site may have contained 

boulders and a rocky ledge or outcropping (A.J. Westgate, personal 

communication to S.D.R., May 27, 2008). These features were not accounted for 

in my environmental model, and they would reflect sound much more strongly 

than the silty clay bottom I specified for Bellhop model runs. 

For most of the cases I considered, spherical spreading with attenuation 

provided relatively accurate estimates of transmission loss in porpoise habitats. 

However, its accuracy depended on the fact that the dominant acoustic arrival at 

the receiver did not interact with the sea surface or bottom, did not overlap 

temporally with other arrivals, and was not dramatically affected by refraction in 

the water column. The existence of those conditions depends on site-specific 
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source-receiver geometry, bathymetry, sediment properties, and sound speed 

profile, so spherical spreading may not accurately describe transmission loss in 

porpoise habitats that differ significantly from the sites considered here. When 

adequate data on the acoustic environment are available, a more detailed model 

such as Bellhop can be a useful tool to investigate the effects of environmental 

conditions on transmission loss at a particular site in greater detail. 
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In 2002 and 2003, tagged sperm whales (Physeter macrocephalus) were experimentally exposed to 
airgun pulses in the Gulf of Mexico, with the tags providing acoustic recordings at measured ranges 

and depths. Ray trace and parabolic equation (PB) models provided information about sound 

propagation paths and accurately predicted time of arrival differences between multipath arrivals. 
With adequate environmental information, a broadband acoustic PE model predicted the relative 
levels of multipath arrivals recorded on the tagged whales. However, lack of array source signature 
data limited modeling of absolute received levels. Airguns produce energy primarily below 250 Hz. 

with spectrum levels about 20-40 dB lower at I kHz. Some arrivals recorded near the surface in 

2002 had energy predominantly above 500 Hz; a surface duct in the 2002 sound speed profile helps 
explain this effect, and the beampattern of the source array also indicates an increased proportion of 
high-frequency sound at near-horizontal launch angles. These findings indicate that airguns 
sometimes expose animals to measurable sound energy above 250 Hz, and demonstrate the 
influences of source and environmental parameters on characteristics of received airgun pulses. The 

study also illustrates that on-axis source levels and simple geometric spreading inadequately 
describe airgun pulse propagation and the extent of exposure zones. © 2006 Acoustical Society of 
America. [DOI: 10.1121/1.2359705] 

PACS number(s): 43.80.Nd, 43.20.Mv, 43.30.Dr [WWA] Pages: 4100^4114 

I. INTRODUCTION menls yield typical peak-to-peak source levels in the range 

222-261 dB re 1 /zPa when corrected to a source range of 
Airgun arrays are often used as sources of low- | m, treating the full array as a point source (Richardson et 

frequency underwater sound for geophysical research and ,//., 1995). During seismic surveys, a streamer of hydro- 
exploration, especially by the oil industry. Airguns generate phones is also generally towed to record sound reflected 

sound by rapidly releasing compressed air from an airgun from below the seafloor, and characteristics of these reflec- 
cylinder, creating an oscillating air bubble that acts as a tions are used to invert for bottom properties and map sub 

source of loud, broadband impulsive sound. The oscillating seafloor features (Barger and Hamblen, 1980; Caldwell and 

air bubble also produces a sequence of exponentially decay- Dragosel, 2000; Dragoset, 2000; Richardson et ai. 1995). 
ing bubble pulses following the initial pulse (Parkes and Hat- Although much of the acoustic energy produced by an airgun 

ton, 1986). Airguns are generally deployed as horizontal pla- array is in the frequency range below 250 Hz, both field 
nar towed arrays, minimizing the bubble pulses and directing recordings and models of source spectra illustrate that air- 

the main beam of low-frequency sound toward the seafloor guns can produce significant energy at frequencies up to at 
(Parkes and Hatton. 1986). Airgun arrays are reported to least I kHz [source energy at 1 kHz is about 40 dB re- 
have theoretical on-axis (directly downward) signatures with 1 /xPa2/Hz less than at 50 Hz (Blackman et ai. 2004; Cald- 

peak energy in the 10-200 Hz range, and far-field measure- well and Dragoset, 2000; Goold and Fish, 1998)]. Due to 

  their high source levels and their low frequency content, air- 
•"Portions of this work were presented in "Preliminary modeling of Diag gun array transmissions in suitable ocean environments have 

acoustic arrivals from the Cull of Mexico in 2(K)2 and 2(X).V Proceedings been detected above background noise at distances of up to 
ol the  twenty-Third (nil! ol Mexico Inlormalion  transfer Meeting. U.S. -,,,,,,, ,        ,,.,.      • • • <    i/s/sj\ 
.,     ,      , .,,.   ....       ... , c    •     <• n   ru 3000 km (Nteuktrk <'/<;/., 2004). Department oi Ihe Interior Minerals Management Service, dull ol Mexieo v ' 
(K'S Region. 2(X).s, and "Quantification and Acoustic Propagation Model- The source level and frequency range of airgun pulses 
ing of Airgun Noise Recorded on Diag-tagged Sperm Whales in ihe dull have generated concern that they may adversely affect fish 
of Mexico"^Proceedings of the 16th Biennial Conference on the Biology and manne mamma|s   Airgun noise cou]d produce adverse 
ol Marine Mammals, San Dieyo, ( A, December 2<X)5. ' 

"'Author lo whom correspondence should be addressed. Hleclronic mail: effects by dlrect  lmury.  for example  by damaging the am- 
sdcruiicrco'whoi.cdu mals' ears, or by less direct mechanisms, such as by masking 
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sounds or disrupting behavior. In terms of wildlife conserva- 
tion, the primary concern regarding these alterations involves 
questions about whether they could affect populations by re- 
ducing survival, reproductive success, or foraging effective- 
ness. Experiments have documented that exposure to airgun 
pulses at close range can damage fish ears (McCauley et ai, 
2003), that fish catches are reduced during airgun surveys in 
an area (Engas et ai, 1996), and that some marine mammals 
may change their behavior in response to airgun exposure 
(Eng&s et a/., 1996; McCauley et ai, 2003; Richardson el ai, 
1995). 

One method for determining whether, and how, airgun 
transmissions might affect marine mammals involves con- 
trolled exposure experiments (CEEs), in which animals are 
observed pre-exposure and then exposed to a controlled level 
of sound. A set of CEEs to measure the response of sperm 
whales to airgun sounds took place during the Sperm Whale 
Seismic Study (SWSS) in the Gulf of Mexico during Sep- 
tember 2002 and June 2003 (Jochens and Biggs, 2003, 
2004). During the experiments, sperm whales were tagged 
with a Dtag, an archival tag that records acoustic, depth, and 
orientation information (Johnson and Tyack, 2003). Tagged 
whales were exposed to airgun array transmissions at ranges 
from I to 13 km. The tags recorded whale movements and 
vocalizations during the exposure as well as airgun sound 
arrivals at a variety of source-whale ranges and whale 
depths. Analysis of the effects of airgun exposure on sperm 
whale foraging behavior in the Gulf of Mexico and determi- 
nation of airgun received levels at the whales during these 
two studies will be presented in two other papers [Miller ei 
ai (unpublished) and Madsen et ai (2006)]. In this paper, we 
study the acoustic propagation of airgun signals recorded on 
Dtags with standard acoustic propagation models. We show 
that seasonally and spatially variable environmental charac- 
teristics play critical roles in determining spectra and levels 
of airgun arrivals at the whales. Our results also show how 
source directivity and a surface ducting effect may propor- 
tionally increase the high-frequency content of airgun signals 
arriving at whales near the surface compared to on-axis air- 
gun spectra. 

To put the discussion of our modeling techniques and 
results in context, we have structured this article as follows. 
Before addressing the CEEs of the Sperm Whale Seismic 
Study (SWSS) in the Gulf of Mexico, we will begin by dis- 
cussing the sound sources and receivers employed during the 
experiments and the acoustic environment in which the 
CEEs took place. We reiterate that there were two compo- 
nents to the experiment, one that took place in September 
2002 and one in June 2003, and we outline differences and 
similarities between the 2 years. Next, we describe the field 
experimental techniques and the acoustic models used to 
analyze the data. We then present the modeling results for 
each year. Finally, we discuss the implications and signifi- 
cance of our work, emphasizing that near-surface receivers 
may detect significant sound energy above 250 Hz in certain 
conditions and that geometric spreading approximations, 
which have traditionally been used to determine the extent of 
marine animal exposure zones, are inadequate to describe 
transmission loss in our study environments. 
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FIG. 1. Configuration of Ihe M/V Speculator airgun array, used in ihe 2002 
experiment. Numbers inside individual airguns indieaie the displacement (in 
eubie inehes) of eaeh uun. 

II. ACOUSTIC SOURCES, RECEIVERS, AND 
ENVIRONMENT 

A. Sound sources: Airgun arrays 

In 2002, tagging operations were based on the R/V Gyre, 
and the airgun source vessel was the M/V Speculator (the 
coastal vessel Speculator was mounted aboard the deep- 
water service vessel M/V Rylan T to allow work in deep- 
water research areas). The Speculator airgun array was a 
tuned array 8 m long and 6 m wide, including 20 external 
sleeve type airguns of various volumes for a total volume of 
1680 in*. Figure 1 shows the configuration of the Speculator 
array. During CEEs. the airgun array was towed at a nominal 
depth of 6 m and fired every 15 s, with a ramp-up at the start 
of each firing period during which the number of airguns 
fired was gradually increased. In this study, we analyzed only 
recordings of full-array airgun arrivals. The equivalent point- 
source source level of the array, backcalculated from the on- 
axis (directly downwards) theoretical far-field signature 
[shown in Fig. 2(a)], was reported to be 258 dB re 

1 fiPa@ 1 m (peak-peak) in the 3-800 Hz frequency band 
(Jochens and Biggs, 2003). Frequency notches in the spec- 
trum of the theoretical far-field signature, which is shown in 
Fig. 2(b), indicate a Lloyd's mirror effect 

Because sound from an airgun array will reflect at the 
ocean surface (which is approximately a pressure-release 
boundary), a Lloyd's mirror effect will occur, and airgun 
pulse arrivals at distant (far-field) receivers will include, in 
addition to the direct arrival, a 180-degree-phase-shifted. 
surface-reflected arrival (Frisk, 1994). This reflected arrival 
is equivalent to the sound that would be received from a 
virtual mirror image source located above the sea surface, 
with approximately the same source amplitude as the airgun 
array but with opposite polarity [the exact mirror source am- 
plitude depends on sea-surface roughness and source fre- 
quency (Jovanovich et ai, 1983)]. Interference between the 
direct pulse and the surface reflection affects the time and 
frequency structure of pulses recorded at distant receivers, 
lengthening the pulse and introducing frequency nulls into 
the source spectrum (Caldwell and Dragoset, 2000; Parkes 
and Hatton, 1986). The effect varies with airgun array tow 
depth: as tow depth increases, frequency nulls occur at more 
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Kid. 2.  (a) (>n-axis theoretical source signature of the M/V Speculator 
aircun array and (h) Us amplitude spectrum. Both plots arc extracted from 
Jochcns and Biggs (2003). 

closely spaced intervals in the source spectrum, and source 

pressure amplilude increases at frequencies below KM) Hz 

(Parkesand Hallon, 1986). 

The beampallern of a planar array composed of identical 

point sources has grating lobes when the spacing between 

array elements, d, is greater than X/2 (where \ is source 

wavelength). The grating lobes are centered at angles 0 from 

the acoustic axis such thai n\=d s\n(0) (where n 

= 1,2.3,...) (Tipler and Llewellyn, 2003). For the Specula- 

tor array, the spacing between airgun clusters was about 3 m 

in the v dimension (along the bow-stern axis of the source 

vessel) and about 6 m in the y dimension (perpendicular to 

the bow-stern axis of the source vessel). Therefore, the array 

beampattern should have grating lobes for source frequencies 

above approximately 250 Hz in the x-z plane and approxi- 

mately 125 Hz in the y-z plane (assuming a sound speed of 

1500 m/s), although array shading will affect the pattern of 

grating lobes somewhat (Urick. 1975). The presence of grat- 

ing lobes in the array beampattern at higher frequencies in- 

creases the proportion (but not the absolute amount) of 

higher-frequency energy transmitted by the array at launch 

angles close to parallel to the sea surface. Detailed modeling 

of the Speculator array beampattern will be presented later in 

the paper, and will include the Lloyd's mirror effect from 

sea-surface reflection as well as the effects of array geometry 

mentioned here. 

The Fresnel zone or near field of an acoustic array ex- 

tends to a range of about D /k, where D is the array dimen- 
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R(i. V Configuration of the M/V Kondor airgun array, used in 2003 experi- 
ment. Numbers inside individual airetins indieale Ihe displaeemenl (in cuhic 
inehes) of each gun. 

sion (length or width) and \ is sound wavelength (Clay and 

Medwin. 1977). Assuming a sound speed of 1500 m/s, the 

far field of the Speculator array begins about 2 in from the 

source at 50 Hz and about 85 m from the source at 2 kHz 

All airgun pulses used in this study were recorded in the far 

field. 

In 2003. tagging operations and visual and acoustic 

monitoring were based on the R/V Maurice Ewing, and the 

airgun source vessel was the M/V Kondor Explorer. The 

Kondor array was a tuned array. 15 m long and 10 m wide, 

with 31 guns of various sizes for a total volume of 3090 in-. 

Only 28 of the guns were active during the experiment, mak- 

ing the total volume of the active guns 2590 in' Figure 3 

shows the configuration of Ihe array. The private geoservice 

firm PCS Exploration (Walton-on-Thames. Surrey, UK) pro- 

vided Ihe on-axis theoretical far-field signature of the array 

(shown in Fig. 4). Backcalculating from the signature, the 

equivalent point-source source level was 261 dB re 

1 /iPa<s> I m (peak-peak) in the 3-218 Hz frequency band 

During CEKs. the airgun array was lowed at a nominal depth 

of 7.5 m and fired every 15 s. with a ramp-up at the start of 

each tiring period during which the number of guns lired was 

gradually increased lo 28. In this study, we analyzed only 

recordings of lull-array airgun arrivals Like the Speculator 

array, the Kondor array source signature is also affected by a 

Lloyd's mirror effect. The Kondor array beampattern should 

also have grating lobes for source frequencies above approxi- 

mately 375 Hz in the x-z plane and approximately 75 Hz in 

the y-z plane (calculated as explained earlier for the Specu- 

lator array, only using airgun cluster spaeings of 2 m in the v 

dimension and 10 m in the y dimension), again increasing 

the proportion of higher-frequency energy transmitted by the 

array at launch angles close to parallel to the sea surface The 

Fresnel near held of the Kondor array begins at about 8 m 

from the array at 50 Hz and 300 m from the array at 2 kHz 

(calculated as above for the Speculator array). Again, all air- 

gun pulses used in this study were recorded in Ihe far field. 

B. Receivers: Dtags 

Sperm whales (Physeter macrocephalwi) were lagged 

with Dtags. digital archival tags lhat record acoustic, depth. 
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anil animal orientation data (Johnson and Tyack. 2003). Ori- 
entation data recorded by the tag can be combined with vi- 
sual tracks to derive an estimate of the position of the tagged 
whale (Zimmer el til. 2005). Two versions of the Dtag were 
used in the experiments. In 2002, Dtagl tags were used. 
Dlagl recorded audio at a sampling rate of 32 kHz (12 bit 
resolution), with flat frequency response (±3 dB) between 
400 Hz and 10 kHz and clip level of 155 dB re 1 fiPa (0- 
peak). Filtering was applied to postemphasize the audio re- 
cordings at low frequencies. With postemphasis, the fre- 
quency response was flat (±1.5 dB) from 60 Hz to 12 kHz. 
Dtagl also recorded data from three-axis accelerometers and 
magnetometers, ambient pressure (depth), and temperature at 
a sampling rate of 48 Hz. In 2003, both Dtagl and Dtag2 tags 
were used, but only Dtag2 data were analyzed in this study. 
Dtag2 recorded audio at a sampling rale of 96 kHz (16 bit 
resolution), with flat (±1.5 dB) frequency response between 
400 Hz and 45 kHz and clip level of 193 dB re 1 MPa (0- 
peak). Filtering was applied to postemphasize the audio re- 
cordings at low frequencies. With postemphasis, the fre- 
quency response was flat (±1.5 dB) from 50 Hz to 45 kHz. 
Dtag2 also recorded data from three-axis accelerometers and 
magnetometers, ambient pressure (depth), and temperature at 
50 Hz. Figure 5 shows the sensitivity curves of Dtagl and 
Dtag2. Both Dtagl and Dtag2 measured temperature near the 
crystal used to control clock speed of the tag. Their ther- 
mistors did not measure ambient water temperature. 

C. Ocean and ocean acoustic environment 

The CEE components of the SWSS in the Gulf of 
Mexico were performed in September 2002 and July 2003, 
and we analyzed data from one exposed whale per year. Fig- 
ure 6 shows the study areas where the data modeled in this 
study were collected. On September II, 2002, the modeled 
CEE took place on a bathymetric slope of about 1.5° in the 
west Mississippi Canyon region, in an area where the water 
depth varies from 400 to 800 m. On June 13, 2003, the mod- 
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eled CEE took place in the Mississippi Canyon, in an area 
where the bathymetry is locally flat and the water depth is 
about 800 m. 

During the CEE cruises in both years. CTD (conductiv- 
ity, temperature, depth) and XBT (expendable bathythermo- 
graph) casts were made periodically to estimate the sound 
speed profile (Jochens and Biggs, 2003, 2004). For acoustic 
modeling of 2002 airgun pulses, we chose one XBT profile 
from the 2002 data set, closest to the experiment site and the 
airgun exposure time. The profile [Fig. 7(a)] indicates a 40 m 
thick mixed layer below the sea surface, which created a 
strong surface duct that trapped high-frequency sound and 
allowed it to propagate with little transmission loss (Urick. 
1975). All sound speed profiles taken from the CTD and 
XBT casts in 2002 showed a similar surface duct. For acous- 
tic modeling of 2003 airgun pulses, we averaged data from 
two CTD profiles taken near the experiment site to obtain 
our sound speed profile. Unlike the 2002 sound speed profile, 
the 2003 profile did not include a strong surface duct [Fig. 
7(b)]. 

No bottom surveys were conducted during the CEE 
cruises, but marine geology and geoacoustic reports near the 
experiment areas are available to help establish the geoa- 
coustic bottom model. According to the NGDC Seafloor 
Surficial Sediment (Deck4l) Database (hup:// 
www.ngdc.noaa.gov), the dominant lithological component 
of the surficial seafloor in the CEE areas is clay, and the 
secondary lithological component is silt. The ratio of bottom 
sound speed to water sound speed at the seafloor should be 
about 0.995, a typical value for silty-clay sediments (Hamil- 
ton, 1980). 

A chirp sonar subbottom survey during the Littoral 
Acoustic Demonstration Center experiment in August 2001 
(Turgut et ui. 2002) was conducted in the same area as the 
2002 modeled CEE, and sound speed and density profiles 
from that report are reproduced in Fig. 8(a). Comparing the 
ocean bottom sound speed to the water sound speed, as 
shown in Fig. 7(a), confirms that the sound speed ratio at the 
2002 study site matches the ratio typical of silty-clay sedi- 
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merits. Figure 8(b) shows reflection coefficient versus graz- 
ing angle on Ihe seafloor at the site of Ihe 2002 modeled 
CKE. calculated with Ihe acoustic modeling package OASKS 
(Schmidt. 2004) using dala on bottom properties from Turgut 
c/ ul. (2002). For acoustic modeling of Ihe 2002 CEE, we 
adopted a smoothed version of Turgut's seafloor sound speed 
and density profiles 

We did not lind dala on the bottom properties al the site 
of the 2003 modeled CFF in Ihe literature; Ihe closest de- 
tailed studies of the sea floor were conducted in 2003 on 
Mississippi Canyon Block 798 (about 20 km from the 2003 
CEE site, but on Ihe opposite side of the canyon; see Fig. 6) 
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KKi. 7. Sound speed profiles lor 20112 (loll) and 2003 (right) used lor acous- 

lic modeling. 
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(McGee el ul., 2003). Geresi el ul. (2(X)5) applied a migra- 
tion velocity analysis to McGee and colleagues' seismic re- 
flection data and obtained the bottom sound speed to 600 m 
depth, which is reproduced in Fig. 9(a) The sound speed 
ratio between the lop layer of Ihe boltom and deep water 
[shown in Fig. 7(b)], 0.993. is typical of silly-clay sediments 
Figure 9(b) shows the bottom reflection coefficient as a func- 
tion of frequency and grazing angle on the seafloor at the site 
of the 2003 modeled CEE. calculated with the acoustic mod 
cling package OASKS (Ocean Acoustics and Seismic Explo- 
ration Synthesis) (Schmidt, 2004) using bottom properties 
from Geresi el ul. (2005). We used Geresi's seafloor sound 
speed profiles to model Ihe 2003 CEE dala. 

We applied Hamilton's regression equations to Ihe se- 
lected bottom profiles to estimate the bolloni density (Hamil- 
ton, 1978) at Ihe 2003 study site and Ihe boltom attenuation 
(Hamilton, 1972) at both sites. 

III. METHODS 

A. Experiments 

Dtags were deployed by approaching sperm whales al 
the surface in a small inflatable boat, then using a long pole 
lo place the tag atop a whale's back, where il attached with 
suction cups. The tags were positively buoyanl and pro- 
grammed to release from Ihe whales after a maximum re- 
cording time of 12 h (Dtagl) or 16 h (Dlag2), al which poinl 
they floated to Ihe surface and were located and recovered 
with Ihe help of a buill-in radio beacon. Since the tags were 
attached to the whales, it is possible that shallowing by Ihe 
whales' bodies might have affected recorded airgun pulses. 
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However, body shadowing should have negligible impact on 

the timing of pulse arrivals, and only minor influence on 
relative levels at the frequencies wc studied. In fact, body 
shadowing would have a greater effect in reducing high fre- 

quencies than low. which would only reduce the surface 
ducting effect described in this study. In 2002. one whale 
underwent a CEE on September 10. and three simultaneously 

tagged whales underwent a CEE on September 11. In 2003. 
CEEs were performed on individual lagged whales on June 
13 anil 22. am! two simultaneously tagged whales underwent 
a CEE on June 14. Each CEE lasled about 1 h. and was 

preceded and followed by lagged control periods with no 
airgun exposure. Visual observers on the observation vessel 
tracked the tagged whales using reticle-binoculars and the 
radio-beacon in the tag. A derived three-dimensional (3D) 
track for the enlire tag attachment period, estimated to be 
accurate to ±0.5 km. was calculated using dead-reckoning 
based on the orientation sensors and the visual locations 

[Johnson and Tyack. 2003; Madsen etui (2006)]. Horizontal 
ranges between the airgun arrays and the whales were calcu- 

lated to the nearest 0.1 km using the derived tracks. 
In this study, we modeled airgun arrivals recorded on 

(.r»/iltf> Alglc (degrees) 

KICi. 4- (a) Bolloin sound speed piotile lot the 200.* study area The sound 
speeds were obtained by apply trie the migration velocity analysis to reflec- 
tion seismic data on Mississippi Canyon Block 7()S (Geresi el tit.. 2005). lb) 
Corresponding reflection coet'hcicnl contour (grazing angle vs frequency] 
tor the 200.1 study area. The corresponding density and attenuation profiles 
were calculated using Hamilton's regression equations (Hamilton. I')"2. 
Is>78). 

one tagged whale each year (whale sw02_254b. tagged on 
September 11. 2002. and whale sw03_l64a. tagged on June 
13. 2003). Table I presents the exact durations and liming of 

the tag deployments that included the modeled CEEs. During 

the 2002 exposure, source whale range varied from 5.4 lo 
12.0 km. and water depth varied from 6(M) lo X00 m. During 
the 2(X)3 exposure, source-whale range varied from I 1.0 to 

12.0 km. and water depth was about 800 m. Figure 10 shows 
the locations of the airgun source vessels and lagged whales 

during the modeled exposures, along with the bathymetry of 
each study area. 

B. Acoustic models 

7. Normal mode model for determination of the cutoff 
frequency 

Surface duels are shallow (generally  less lhan  100 m 
deep), so only higher-frequency (shorter-wavelength) sound 

TABLE I. Duration and tinting of modeled tag deployments and CEE^ in 

2002 and 2001. 

Dale Whale ID Tagged lime Airgun exposure lime 

9/11/2002 
6/13/2003 

sw02_254b 
sw03_164a 

10:28-22:52 
01:48-23:20 

12:16-14:20 
18:26-19:26 
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is trapped and propagates efficiently in surface duels (Uriels. 
197?). The cutoff frequency of a surface duct is the approxi- 
mate frequency below which sound is not trapped in the 
duct. Cutoff frequency is approximate because sound below 
the cutoff frequency may be only partially trapped in the duct 
(a "leaky duct"), and sound may need to be significantly 
above the cutoff frequency for maximal trapping to occur. To 
estimate the cutoff frequency of the surface duct in our 2002 
study area, we performed a series of KRAKEN normal mode 
model tuns (Potter, 1995) at rive frequencies ranging from 

50 to 1600 Hz. We used (he model output to determine the 
mode number n and modal eigenvalue kn for the lowest- 

numbered mode trapped in the duct at each frequency (a 
mode was considered trapped if it had high intensity in the 
duct, and exponentially decaying intensity below (he duct). 
Then, to determine whether mode /; would propagate, we 
calculated its mode-propagation cutoff frequency. u>„ (the 
frequency above which at least n modes will propagate). 
Trapped trunk's with GJ„ less than the frequency of the 
KRAKEN model run that generated them would propagate. 
We estimated w„ accordine to Frisk (1994): 

where 

k ':»=\\- •k;„ 

m 

(21 

u> is radian frequency and <• is sound speed. We used 

1543 m/s for sound speed in the calculations [see Fig. 
7(a)].   This   procedure   determined   whether   or   not   the 

trapped modes would propagate in the duct al each fre- 
quency tested, and therefore allowed us to estimate the 
cutoff frequency of the surface duct as the lowest fre- 
quency at which the (rapped modes would propagate. 

2. Airgun array beampattern model 

An airgun array usually contains airgun elements with 
different volumes, which produce sound pulses with different 

amplitudes, damping rates and bubble pulse periods (Zi- 
olkowski. 1970). This variability makes airgun array signa- 

ture modeling complex and difficult. One can estimate the 
signature from near-field measurements of an airgun array 

(Ziolkowski etal.. 19X2. 1997: Laws era!.. 1998). hut during 
the CEEs we studied, no near-field measurements of airgun 
pulses were made. An alternative way to estimate the signa- 
ture of an airgun array is to treat each element as a monopolc 

source and consider the geometric configuration of the array. 
The volume of every element in the Speculator and Konilor 
arrays was known, and since the amplitude of an airgun el- 
ement is approximately proportional to the cube-root of its 

volume, we could estimate the relative amplitude of the ele- 
ments in each array (Caldwell and Dragosel. 2000). We mod- 
eled the army according to the following normalized formu- 

lation in a free space bounded by the sea surface 

„-»'..", 
SU.ai) = 2 v)n—— + S (- I )v\' 

•-/*«* 

I M 

where f is (he position of the receiver, to is (he acoustic 
frequency, k^ — iolc is the acoustic wave number in water 
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(where r is ihe sound speed. 1500 m/s). v, is ihe volume of 
/th airgun element, and R, is the distanee from the receiver 

to the /til airgun element. In the second term. Ihe (-1) 

indicates the contribution from the virtual "mirror image 
source" due to the Lloyd's mirror effect of the sea surface 

(modeled as a pressure release boundary), and R' is the 
distance from the receiver to the image source of the t'th 

airgun element. Therefore, our airgun array beampattern 
model includes both the effects of array geometry and the 
Lloyd's mirror effect caused by sea-surface reflection. Us- 
ing this model, we calculated the acoustic pressure at a 
certain radius from the array and normalized it to obtain 

an estimate of the source beampattern. The airgun ele 
ments in this model were treated as monopole sources 
with a single impulse, while real airgun pulses include a 
series of bubble pulses (Ziolkowski. 1970). However, the 
model could still predict the locations of spatial and fre- 
quency notches in the airgun array beampattern. since 

notch locations are mainly determined by the geometric 
configuration of the array (Parkes and Hatton 1986, Tipler 
and Llewellyn 2003). 

3. Acoustic ray-tracing model 

In this study, we modeled range-dependent acoustic 

propagation but considered only reflection from the sea-floor 
and sea-surface boundaries and refraction due to soundspeed 
variations. We used the ray-tracing program RAY (Bowlin cl 
nl.. 1992). which can deal with a range-dependent environ- 
ment, to calculate sound propagation paths and travel times 

of the airgun pulses recorded during the modeled CEEs. The 
fundamental theory underlying RAY is well known: the 
reader interested in more detail is referred to the relevant 

literature (e.g.. Bowlin el al.. 1992; Jensen cl ul.. 1994). 

4. Broadband acoustic propagation modeling 

To model the transient airgun pulse signals recorded on 

Dtags in the CEEs. we developed a two-dimensional (2D) 
broadband range-dependent acoustic propagation program 
based on Fourier synthesis (Jensen et ul.. 1994). "Die model, 
described below, can compute received sound pulses over a 
specified bandwidth at a single position. 

The Fourier pulse synthesis technique is based on the 
Fourier transform of the continuous wave frequency-domain 

response multiplied by the spectrum 

/'('--.') rS S(m\H(r.:..o})e''"'ilo>. (4) 

where p(r,;,f) is the pressure signal of a sound source re- 
ceived at the position (r.z) on a vertical plane, which also 
includes the source: r is horizontal range: and ; is depth. 

S(OJ) is the source spectrum with a finite bandwidth 2<oIIMX, 
and H[r.:.(o) is the frequency response of a monopole 
source at a frequency o>. In our program. H(r,:.o>) is cal- 

culated by the existing time-harmonic acoustic model 
RAM (range-dependent acoustic model), a parabolic equa- 
tion (PE) model developed by Michael D. Collins at the 

Naval Research Laboratory in Washington. DC (Collins. 
1993). Discretizing the transform F.q. (4). we obtain 

l>ir.:..kli r inT) 

—     2,     [S(u))H{r,z.nA<o) 
2lT n=-{NI2-\) 

X^-j'W^Wl .-j{2vnk)IN (5) 

where on the right hand side, the frequency within a finite 
bandwidth is discretized as N samples with values nAu, with 

n=(N/2-l)~N/2. On the left-hand side, the lime within a 
finite window 7"( = l/Ao)) is sampled at k\r. with k 

= I.2,3...N. The sampling rate must obey the Nyquisl cri- 
terion, or aliasing will occur in the frequency domain. Simi- 
larly, discretization in the frequency domain can cause wrap- 
around in the time domain if A<u is too Luge, with in (on the 
left hand side of Ihe equation) being the index of the period 

icily of the discretized time-domain signal. To minimize the 
wrap-around effect while keeping Aoi large enough for rea- 

sonable computation time, we applied complex frequency 
integration (Malick and Frazer. 19X7; Jensen el ul.. 1994). If 
/V is an integer power of two. the fast Fourier transform 

algorithm is efficient for evaluating ihe summation. 
For all model runs, we placed an artificial absorbing 

layer in the sediments to prevent sound energy from being 

reflected or refracted back to the water from the deep bottom. 
The sound source in our model runs was a bell-shaped single 
pulse, containing most of its energy in the frequency band 
from 0 Hz to three times its central frequency. Mathemati- 
cally, this pulse can be represented as 

s'l) = 0.75 - cos 2TT/, I + 0.25 cos 4TT/, /.    0 *51 «5 T- I//,. 

(6) 

where /j is the center frequency. We used /l.=250 Hz. The 
model source does not accurately represent the output of 
an airgun array, but the resulting model output can still 
predict the arrival time pattern measured at the receiver. 
Because the low-frequency flow noise is very high in the 
2002 Dlag record, and Ihe model source produces 95CA of 

its energy in the 0-600 Hz frequency band, we bandpass 
filtered the 2002 data and model results from 100 to 

600 Hz before comparing them. 

IV. RESULTS 

A. 2002 experiment and model results 

Figure 11 shows the wave form and spectrogram of two 
airgun pulses from the 2002 experiment, recorded on the 

same whale near the surface (at 24 m depth) and in deep 
water (at 420 m depth). There are three clear arrivals in the 

pulse recorded at 24 m depth. The spectrogram shows that 
the first arrival contains significant high-frequency energy 
but almost no energy below 250 Hz. In the pulse recorded al 
420 m depth, two strong whale clicks appear at 0.12 and 
0.56 s (reduced arrival time), followed by their echoes. Five 

arrivals from ihe airgun pulse also can be seen. The first two 
weak arrivals at 0.25 and 0.32 s contain only high frequency 
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riCi. 11. The wave form and speclrouram of two airgun pulses recorded nn 
Ihe Dluu. when the tugged whale was al (a) 24 m depth and (ht 42u m deplh 
during Ihc 2002 experiment. AITOWS indicate the airgun arrivals. The intense 
broadband signals at ahntil I). 12 s and annul (1.56 s (both followed bv their 

echoes) arc clicks produced In the lagged whale. 

energy. The lasi arrival, al 0.6 s. overlaps wilh Ihe echo of 

the second whale click. Spectrograms from bolh depths also 

show high level, low frequency flow noise. 

The first airgini arrivals recorded when the whale was 

near the surface lacked low-frequency energy because of the 

high-pass tillering effect of the surface duet (Fig. 7). Figure 

12 shows a plot of RAM parabolic equation model output 

(transmission loss as a function of range and deplh for a 

600 H/ source), illustrating the surface ducting effect. Based 

on our normal mode model runs, we estimated that the cutoff 

frequency of the surface duct in (he 2002 sound speed profile 

was about 2?0 Hz. which agrees well wilh Ihe cutoff fre- 

quency shown in the data (Fig. II). Grating lohes in the 

airgun array beampattern can also channel energy to near- 

horizontal launch angles from the array, and thus into the 

surface duet. Modeling the beampattern of the Speculator 

source array al 7 m deplh showed lhal grating lobes (due to 

both array geometry and sea-surface reflection) siarl emerg- 

ing at 120 Hz. an octave below the duct cutoff frequency. 

Figure l.i shows examples of the Speculator airgun array 

beampattern al six frequencies from 50 lo 650 Hi. Our 

beampattern model predicts frequency notches occurring in 

the downward direction at 107 and 214 Hz. in good agree- 

ment wilh ihe predicted amplitude spectrum of ihe on axis 

airgun array signature [see Fig. 2(h)]. At 650 H/. the energy 

FIU. 12. transmission loss 
omnidirectional point source 
The sea Hoot is indicated b\ 

4 6 8 

Range (km) 

s a function i.l range and deplh loi a 600 11/ 
at 7 in depth in the 2IKJ2 siud\ environment. 
a solid black line 

IC     / 
\ 

2C(| 
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J 
J | 

''J 
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1     . 
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FIG. IX The modeled beampattern of the M/V Speculator airgun array nl 
Ms-M.-i.il fieijuencies. in ;i \eitical plane aloni: lhe towuie. diieclion. Modeled 
bcompaitcm includes the effects of sca-surfacc reflection as well as ami) 
geometry. a.s noted in ihe text. The airgun array was 7 m he Urn ihe sea 
•surface tor consistency with ihe modeled source sip nature (Fig 2) I aunch 
angles were measured relative to .1 line extending from how 10 stem, and 1 
iD ntirmitli/ed heampniiern was calculated ;it each frequency. (Because the 
figure shows 2D heampaltems, ihe maximum plotted beumpallern levels 
may he less than n dR it the maximum-amplitude lohc of the heampnitcm 
occurred outside ihe plane plotted in ihis ligure.) 
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FIG. 14. (a) Modeled wave tonus (blue Iracesl aikl eigenray arrival limes 
(highlighted bv black circles) ai 7.4 km range and various depths in 21X12. 
Ray labels are as follows: li indicates a bottom relied ion. S indicates a 
surface reflection, and R indicates refraction in the water column, (bl MCKI- 

clcd eigenr.iv paths (thick hlack lines) to receivers at 25 in and 400 in depth 
and sound propagation palhs (thin green lines) for the 2(H)2 experiment. The 
dashed line in the 25 m depth panel is the ultimate RR ray with the shal- 
lowest turning point. 

emitted by the array at near-horizontal launch angles is even 

greater than in the downward direction. The model also il 
luslrates that, even at frequencies where the greatest propor- 
tion of sound is directed toward the sea floor (e.g.. 160 Hz), 
sound carried by the sidelobes (at launch angles closer to the 

horizontal) is only 20 dB lower than thai in the main, 
downward-directed lobe [see Fig. 2(b)]. 

The modeling of the pulse arrivals, including the eigen- 

ray arrival time at 7.4 km range and various depths, is shown 
in Fig. 14(a). The corresponding ray labels are also included: 

the labels consist of a "B" for every bottom reflection, an "S" 
for each reflection at the sea surface, and an "R" to indicate 

refraction in the water column. For example, a BS ray leaves 

the source, bounces off the bottom, reflects at the surface, 

and linally arrives al the receiver, and a BSB ray is like a BS 
ray with one more bottom bounce before arriving at the re- 
ceiver. The pulse arrivals calculated from the broadband 

model arrive exactly when the ray-tracing model predicts, 
except in the case of the diffraetive arrivals near the surface 

and Ihe surface duct leakages, where ray theory fails (Frisk. 
19441. The eigenray paths are also calculated and shown in 

Fig. 14(bl for two selected depths. 25 and 400 m. The lirsi 
arrival at the 25 m-depth receiver travels in the surface duct, 
in concordance with our observation that the hist arrival has 

little low-frequency energy. The BSB and BSBS eigenray 
paths also produce pulses at the 25 m receiver depth: how- 

ever, they arrive almost at the same time and combine into a 
single pulse. Figure 14(a) also shows lhal as ihe receiver 
goes deeper, the pulses traveling along BSB and BSBS ray 

palhs separate, and Ihe grazing angles of ihe bottom bounces 
of these two rays also change. The reflection coefficient con- 
lour for 2002 [Fig. 8(b)] shows that Ihe BSBS ray (grazing 
angle 24') has more bottom loss than the BSB ray (grazing 

angle of 18"), explaining lite difference in amplitudes of ihe 
BSB and BSBS rays [Figs. 14(a) and 15]. A plot of eigenrays 
to the 400 m receiver is shown in Fig. 14(b): as shown in 

Fig. 14(a). the BR ray path arrives al ihe receiver almost at 
the same time as the BS ray. Ray trace output also shows that 

BR rays can arrive at a receiver al 7.4 km range only above 
560 m deplh. Below that, only BS rays can reach. Con- 
versely. BR and not BS rays arrive at receivers at depths 

shallower than i'M) in. 

Figure 14(a) also shows surface duct leakage and the 
diffraetive arrivals. Sound energy leaks from ihe surface duel 
due to diffraction and scattering al ihe boundaries of ihe duel 

(Weston el al.. 1991). Since the propagation model we used 
does not account for interface roughness at the boundaries of 
the duel, the leakage seen in our modeling results is due only 

to diffraction. Sound energy Happed in a surface duct and 
subject to leakage has been previously described, from a 
modal sound propagation perspective, as a virtual mode (La- 
bianca. 1972). When such a virtual mode occurs, some sur- 
face ducted energy continuously seeps from the duct, but 
remains trapped in the waveguide as a whole. The leakages 

eventually return to the duct after bouncing off the bottom or 
refracting in the water column (Porter and Jensen. 19931. 
Figure 14(a) shows two arrivals resulting from surface duct 

leakages; the second of those arrivals actually leaks from lite 

duct first, but undergoes a bottom bounce before arriving at 
the whale. The broadband PE model also predicts that a re- 

ceiver in the surface duct will delect diffraetive arrivals [Fig. 
14(a): Murphy and Davis. 1974]. Unlike ihe surface duct 
leakages, diffraetive arrivals in the duct arc from an upward- 
directed ray that is below the duct. As shown in Fig. 14(h). 

ihe ray in question is lite ultimate BR ray. which has a turn- 
ing point closer to the base of the surface duct than any other 
BR ray. The ray turns down at the lower bound of the surface 
duct (a local maximum in ihe sound speed profile), and some 
of its energy enters the duct. 
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A comparison of wave forms from the Diag records and 

the broadband model results is shown in Fig. 15. As shown 

in Fit;. 15(a). the liming and relative amplitudes of modeled 

arrivals match the data very well for a receiver at 7.4 km 

range and 24..! m depth. The broadband model also provides 

very good results compared with the Dtag data at 8.6 km 

range and 420 m depth, where the relative differences be- 

tween the surface duct leakages and the single bottom 

bounce pulses are especially well described. 

B. 2003 experiment and model results 

Figure 16 shows the wave form and spectrogram of a 

typical airguti pulse recorded on a lagged whale 11.2 km 

from the source at 451) m depth (the intense broadband sig- 

nals at about 0.4 and 0.9 s are clicks produced by the tagged 

whale). The spectrogram illustrates that, in contrast to the 

2002 data, all arrivals from the airgun pulse contain mainly 

low-frequency energy (below 500 Hz. and concentrated he- 

low 200 Hz). Because the sound speed profile for the mod- 

eled 2003 CEE did nol include a significant surface duct, 

high-frequency sound did nol undergo ducted propagation to 
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FIG. In, The wave form .^ spectrogram of an airgun pulse recorded mi the 
Dtag when the ragged whale was .it 450 in depth .u\i 11 2 km range during 
ihe 2005 experiment. Arrows indicate airgun arrivals. Hie iniense broadband 
signals .a about 0.4 M\\ n.q s are clicks produced by Ms- lagged whale 

the tagged whale near the surface, hut rather reached the 

whale after rellecling from ihe bottom and ihe sea surface 

[see Fig. 17(b)]. 
The modeled pulse arrivals and eigenray arrival times at 

11.2 km range and various deplhs are shown in Fig. 17(a). 

The eigenray paths for receivers al 150 and 450 m depth are 

also shown in Fig. 17(b). As they did in ihe 2002 model runs. 

Ihe ray and broadband models predicted nearly identical air- 

gun pulse arrival times. The modeled arrival limes match 

fairly well with the data (Figs. IS and I1;). Figure 17(a) 

shows that the first airgun arrival at 150 m depth is a BR ray. 

while that at 450 m depth is a BS ray. because no BR rays 

arrive at receivers below about 200 m depth al 11.2 km 

range. Figure 17 also indicates that the third-arriving rays 

undergo one more surface reflection than the second-arriving 

rays, which explains why Ihe third arrivals (shown in Fig 

IS) are about ISO out of phase with the second arrivals 

(Frisk. 1994). 

Figure 19 shows a wave form comparison between ihe 

Dtag records and the broadband PI. model results for a re- 

ceiver at 450 m depth and I 1.2 km range. These model re- 

sults did not match the data as well as the 2002 model results 

because our information about bottom characteristics was 

less precise for the 200.5 sile. as will he clarified further in 

the discussion section. 

V. DISCUSSION AND CONCLUSIONS 

Most reviews on the effects of airgun array pulses on 

marine life have accepted the assumption that airgun noise is 

limited lo low frequencies, and have concentrated on species 

thought to have g<x>d low-frequency hearing (Caldwell. 

2002; Popper el al.. 2004; Richardson el al.. 1995). We 

found that animals located near the surface when surface- 

ducting conditions are present may be exposed lo measurable 

levels of airgun sound above 5(H) Hz. The surface ducting 

effect described here means that even animals with poor low- 

frequency hearing (for example, dolphins and other small 

odontocetes) could potentially detect and be affected by air- 
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and sound propagation paths (thin green lines) for the 2003 experiment. 

gun noise. However, we did not observe the surface ducting 
effect in all environmental settings, which underscores the 
influence of temporally and spatially variable oceanographic 

conditions on acoustic propagation. The received level of 
airgun pulses clearly depends not only on source-receiver 
range and on-axis airgun array source level, but also on array 
hcampattern. sound speed profile, bathymetry, and bottom 
properties. 

Our ability to model the absolute intensity of airgun 
pulses at the whales was limited by incomplete data in a few 

key areas. First, we did not have an adequate measurement of 
the  source  signatures of the  airgun arrays (at all  launch 
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FRi. 18. Wave forms of airgun arrivals recorded vin Dtau's al different 
depths and ahotti I I km range in 2003, Black circles highlight the time of 
each airuun arrival. Rav path labels are as follows: B indicates a bollom 
reflection, and S indicates a surface reflection. 

angles). Also, the lack of suitably detailed information on 

environmental properties in the 2003 study area explains the 
mismatch between 20011 model and data wave forms (Fig. 
19). First, the 2(X)3 bottom property data was taken about 

20 km from the 2003 CEE site, on the opposite side of the 
Mississippi Canyon, and errors in bollom parameters result 

in inaccurate modeling of sound amplitude. Second, in 2003. 
sound speed data were collected temporally and spatially fur- 
ther from the study area than in 2002. Consequently, inaccu- 
racies in the 2(X)3 sound speed profile resulted in differences 
between modeled and observed relative arrival times: any 

errors in bathymetry could also have caused arrival-time dis- 
crepancies. Finally, the numerical source used in the models 
is a point source, which acts like a dipole at low frequencies 
and emits less energy at launch angles close to the horizontal 
than does an airgun array. This difference helps explain why 
airgun arrivals that left the source at near-horizontal launch 
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FIG. 19. Wave form comparison between (a) the 21XM Diajj recording and 
(b) broadband model results lor a receiver at 11.2 km range and 45U in 
depth. 
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angles have more energy than the model predicts. The ob- 
served mismatch hctween 2003 data and model results em- 

phasizes the fact that accurate modeling of airgun pulse ar- 
rivals is impossible without adequate environmental data and 
source information. 

Surface dueled propagation increased the proportion o( 
high-frequency content compared to the seismic (low fre- 
quency) content of some airgun arrivals recorded on whales 
at shallow depths (<50 m) in 2002. hut not in 2003. when 

no surface duct was observed. A reasonable "ducting gain" 
estimate for the reduction in transmission loss for sound 

trapped in a surface duct can he obtained by a simple physi- 

cal argument. The surface duct confines the low-angle 
trapped energy to its thickness /;. as opposed to the full water 
column depth H. so that there is an Hlit geometric ducting 

gain for the trapped energy. Also, the ducted energy does not 

interact with the bottom and suffer bottom loss, so the ducted 
rays will "gain" the amount of energy they would have lost 
in bottom interaction if the duct did not exist. Thus we can 
predicate a "surface duct gain" (i m dli of 

(,'= I ()lo«(H//i) + Tl .(/./•.#) (7) 

for the portion of the rays trapped in the duct, where TL is 
the transmission loss for a nonducted ray of source angle H. 
Of course, exact model calculations are preferable, and we 
would recommend that any calculations requiring precision 

be based on such models. 

The exact levels notwithstanding, the data from the 
2002-2003 Dtag controlled exposure studies do show that 

airgun arrays produce significant energy at frequencies well 
above those actually utilized for geophysical surveys (Cald- 
well and Dragoset. 2000: see Madsen et al. (2006) for quan- 
tification of received levels). Our model results and source 
beampattern analysis explain why there was more energy in 
the 500-2500 H/ frequency band in the airgun signals re- 
corded at a whale near the surface when a surface duct was 
present. 

We recommend that future research should include Ixith 
modeling and measurement of airgun array source signatures 
at a full range of angles and at frequencies up to several 

kilohertz. Collecting (and publishing) accurate and detailed 
data on airgun array sources would allow for correspond- 
ingly accurate and detailed predictions of airgun sound 
propagation in the ocean. Failure to properly quantify the 
acoustic source properties of airgun arrays presently limits 

our ability to predict, test for. and mitigate any potential 
negative effects they may have. In addition, the ability to 
predict received levels of airgun pulses as a function of 

source-receiver range depends on having detailed, current 
information about the ocean and seabed environment in 
which the sounds are propagating. 

The data we used were collected as part of a controlled 
exposure experiment designed to study the effect of airgun 
activity on sperm whale behavior (Miller el al.. unpub- 
lished). Even assuming behavioral effects can be well- 
described, there are several major obstacles to the interpre- 

tation of such controlled exposure data and their integration 
into policies designed to mitigate adverse effects of airgun 
sounds on marine life. First, one must quantify received lev- 

els of airgun noise in a manner that accurately relates to ihe 

animals perception of the sound: ideally, this measured level 

should be directly proportional to the risk of physical dam- 

age or adverse behavioral modifications (Madsen. 20051. 

Second, most management guidelines for mitigating poten 
lial airgun effects on marine mammals define maximum al- 

lowable exposure levels and then design regulations to pro 

tect animals from exposure to unacceptable sound levels. 

One popular framework for current discussions on potential 

effects of human-made sounds o\\ marine species, proposed 

by Richardson et al. (IW5). suggests that a sound source is 

surrounded by several zones of potential influence on receiv- 

ing animals: at very close ranges, animals may be injured by 

a very loud sound: at greater ranges, their behavior or fitness 

may be affected by the sound: al even greater ranges, they 

can detect the sound but are not affected by it; and finally. 

beyond some range, the animals cannot detect the sound at 

all. While conceptually useful, the model assumes thai sound 

exposure decreases monotonically with range from the 

source. Accordingly, an allowable exposure level is generally 

translated to a range from the airgun array within which po- 
tentially impacted marine mammals musi not occur during 

airgun operation (Barlow and Gentry. 2004: Richardson el 

al.. 19951. This range is usually estimated from the maxi- 

mum allowable exposure level using the hackcalculated. 

broadband, on-axis source level of the airgun array. Most 

allowable range estimates also assume a geometric spreading 

transmission loss or a range-independent acoustic model 
wiih an omnidirectional sound source (Barlow and Gentry. 

2004: Gordon cr til.. 2004). Since most airgun array source 

levels are calculated only on-axis and for frequencies below 
250 Hz (Gausland. 201X1). die range estimation described 

above does not account for the full frequency range produced 

by the array or the directionality of the array [although some 
regulatory approaches include a correction for array beam- 

pattern effects (NMFS. 2003)]. Moreover, the detailed as- 

pects of the mullipath acoustic propagation, such as the ex- 

istence of convergence zones and shadow zones, surface 

ducts, etc.. are disregarded. 

Our ray trace and PE model results show a convergence 
zone at 6-8 km range (2003) or 4-6 km range (20021 

(shown in Fig. 12). which is further continued by data on 
received levels in the Dtag recordings (for details, see Mad- 

sen ft til.. 2006). These results illustrate that in many cases 

airgun received levels will not decrease monotonically with 

increasing range, so that a simple spherical or cylindrical 
spreading law will not accurately predict the observed pat- 
tern of received levels. Regulation based on inappropriate 

application of a geometric spreading law to calculate the ex- 

tent of exposure zones could result in exposing animals to 
higher-than-intended noise levels. For example, using a 

geometric-spreading based calculation method to estimate 
the range from an airgun array at which a near-surface sperm 

whale in the Gulf of Mexico would he exposed to a poten- 
tially harmful received level of 180 dB re I juPa [root-mean- 

squared (rms)] results in a range of 295 m (NMFS. 2003). 
However, received airgun array levels of 180 dB re I /uPa 

(rms) al 18 m depth in the Gulf of Mexico have been mea- 
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sured al ranges up to ~3.5 km from the source—over (en 
times the range predicted by the geometric spreading calcu- 
lation (Tolstoy el ill., 2004). 

Regulations defining allowable ranges between airgun 
array sound sources and marine species must take into ac- 
count the potentially complicated relationship between 
source-receiver range and depth, acoustic frequency, and re- 
ceived sound level. Other mitigation actions, such as ramp- 
up. assume that potentially affected animals will swim away 
from a source during ramp-up. Our results show, however, 
that animals may experience increased exposure levels as 
they swim away from a source under some conditions, and 
decreased levels as they approach. In this case, an animal 
seeking to reduce exposure in the short-term may actually 
approach the source. Source beampartcrn may also vary dra- 
matically during ramp-up. resulting in variation in received 
levels and frequency spectra over time at a given location. 
There is clearly an urgent need better to define the acoustic 
signatures of airgun arrays and how sound propagates from 
them. Any efforts to reduce the risk of airguns to marine 
mammals must include accurate predictions of exposure. 
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Chapter 5. Modeling Sperm Whale Response to Airgun Sounds 

5.1 Introduction 

Despite strong public concern about potential adverse effects of sonars, 

airguns and other anthropogenic sounds on marine mammals, relatively few 

controlled exposure experiments have been carried out to describe and quantify 

those effects (Richardson etal., 1995; Miller etal., 2000; Nowacek et a/., 2004; 

Tyack, 2008).   Even when there is anecdotal evidence of behavioral reactions to 

a certain stimulus, careful experiments testing responses of marine mammals to 

noise are relatively few. Such experiments are difficult to design and carry out, 

and the resulting data difficult to analyze, for several reasons. Because of the 

cost and logistical difficulties involved with field work, most studies of marine 

mammal behavior involve relatively few individual animals. To avoid potential 

injury, temporary hearing threshold shift, or significant disruption of behavior, 

controlled exposures are usually conducted at relatively low sound levels 

compared to the maximum levels animals might encounter if the sound source 

were operating at close range and at full power. Consequently, behavioral 

responses to controlled exposures are likely to be subtle and difficult to detect; 

statistical power to detect such small effects is limited when the number of 

animals exposed is relatively small and traditional statistical methods are applied. 

Among published studies, when statistical analysis of behavioral rate data is 

presented, it generally entails binning the time-series behavior observations into 

pre-exposure, exposure, and post-exposure periods, then applying ANOVA or 

similar statistical tests to detect differences in mean behavioral rates between 

periods. Richardson and colleagues review marine mammal examples (1995); 

many examples of general animal behavior rate studies also exist (Cherry, 1989; 

Mooring, 1995; Paredes etal., 2005; Fernandez-Juricicand Tran, 2007). When 

relatively low-power tests are employed and expected impacts are subtle, the 

failure to detect an impact does not imply that no impact exists, so results can be 

disappointingly inconclusive. Careful experimental design (including adequate 
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sample size and a range of sound exposure levels) may limit this problem for 

future marine mammal sound exposure studies, but appropriate and more 

powerful statistical methods can also help. 

To overcome some of the data analysis limitations described above, I 

have developed several statistical methods applicable to whale behavior data, 

and I have applied them to data from an experiment in which sperm whales were 

exposed to airgun sounds. To assess whether sperm whale foraging behavior 

changed during airgun exposure, I applied two main types of statistical analysis. 

The first test was the rotation test, a randomization technique designed to detect 

changes in the rate of a behavioral point process even if the behavioral time- 

series is auto-correlated, contains bouts or clumps of events, or is otherwise 

sequentially dependent. The second method involved use of a continuous-time 

semi-Markov chain model to describe whale behavior, combined with a likelihood 

ratio test for significant differences in behavior between control and exposure 

time-periods. 

Although similar models can be applied to any point-process time series or 

defined set of behavioral states, I chose to model foraging behavior in particular 

for several reasons.  First, I wanted to test for changes in behavior that were 

biologically significant, not just statistically significant; since foraging rate and 

foraging success are important determinants of individual fitness, adverse effects 

of noise on individual foraging may have population-level consequences. 

Second, the experiment provided especially extensive and detailed data on 

foraging behavior. Sperm whales use echolocation to find prey, and audio/dive 

records from the dataset allowed me to determine when each animal was 

foraging and which stage of foraging they occupied (echolocating to search for 

prey, attempting to capture prey item(s), or silent/not actively echolocating). The 

whales in the study spent the majority of their time foraging. 
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The methods presented in this chapter have several advantages over the 

more traditional methods described above, including: 1) increased statistical 

power (because the power of our tests scales with the number of events 

observed rather than the number of whales tested); 2) ability to conduct analyses 

both at the level of the individual animal and at the group level; and 3) potential to 

allow for or average over individual variation in baseline behavior and behavioral 

response. In the following sections, I will describe the experimental data 

collection, development and application of the semi-Markov chain model, and 

results of the data analysis. 

5.2 Methods 

5.2.1 Experimental Methods and Data Collection 

In the 2002 and 2003 Sperm Whale Seismic Study (SWSS) experiments 

in the Gulf of Mexico, eight sperm whales underwent controlled exposure to 

airgun pulses. A brief description of the experiments follows here, and detailed 

descriptions of the experimental set-up and acoustic data collected are available 

in the literature (Jochens and Biggs, 2003; Miller et al., 2003; Jochens and Biggs, 

2004; DeRuiter et al., 2006; Madsen et al., 2006). During the experiments, eight 

sperm whales were tagged with a dtag, an archival tag that records acoustic, 

depth, and orientation information (Johnson and Tyack, 2003). Tagged whales 

were exposed to transmissions from airgun arrays, fired every 15 seconds at 

source-whale ranges from 1 to13 km. Table 5.1 presents details on the timing 

and duration of tagging and airgun exposure, as well as the sex of the tagged 

whales when known. The tags recorded whale movements and vocalizations 

during the exposure, as well as airgun sound arrivals at a variety of source-whale 

ranges and whale depths. Of the eight whales tested, seven foraged during the 

airgun exposure; the animal that did not forage was not included in my analysis. 
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Whale ID Date Tag 

on 

Tag 

off 

CEE 

start 

CEE 

duration 

RL Sex 

sw02_253a 10/9/2002 16:38 20:58 17:59 104 min 120-146 ? 

sw02_254a 11/9/2002 10:13 21.45 12:16 70 min 116-143 F 

F sw02_254b 11/9/2002 10:28 22.52 12:16 70 min 121-142 

sw02_254c 11/9/2002 10:34 22.56 12:16 70 min 125-143 ? 

sw03_164a 13/6/03 9:48 23.2 18:26 60 min 125-146 

u_ 

sw03_165a 14/6/03 13:35 6:19 17:01 120 min 123-146 F 

sw03_165b 14/6/03 13:38 6:05 17:01 120 min 119-147 F 

Table 5.1. Timing and duration of whale tagging during controlled exposure 

experiments in 2002 and 2003. The RL column gives m-weighted rms (root- 

mean-squared) received levels of airgun arrivals with signal-to-noise levels 

sufficient to allow quantification (from Madsen et al., 2006; see paper for details 

on the level calculations). CEE = Controlled Exposure Experiment. The sex of 

some animals was determined genetically using sloughed skin samples (Dan 

Engelhaupt, personal communication); F means female, and ? means no sample 

was analyzed. 

5.2.2 Rotation Test for Changes in Buzz Rates 

Using the rate of echolocation buzzes recorded on the dtags (which 

indicate attempted or successful prey capture events) as a proxy for foraging rate 

(Miller et al., 2004a), I was able to construct a time-series of attempted prey 

captures for each whale in the study. One of my major analysis goals for the 

sperm whale dataset was to determine whether the whale foraging rate changed 

during airgun exposure relative to control periods (in this case, I hypothesized 

that airgun exposure would lead to decreased foraging rates as airgun pulses 

masked prey echoes or acted as a nuisance to the whales). This type of problem 
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is common in behavioral ecology and ethology, as researchers often wish to 

determine whether the rate at which a certain behavioral event occurs is affected 

by an environmental or other factor. In the case I considered, the event is a 

vocalization by an individual sperm whale and the factor is the operation or non- 

operation of an airgun array. A typical experiment to test for such effects 

involves observing animals during control and treatment periods and determining 

the average rate of certain behaviors under each condition. This type of 

behavioral rate data is often analyzed as binned counts (e.g., Cherry, 1989; 

Mooring, 1995; Paredes era/., 2005; Femandez-Juricic and Tran, 2007). 

Analyzing point process data in this way entails a loss of statistical power (Dean 

and Balshaw, 1997), and since maximizing power is critical for my seven-whale 

dataset, I have instead pursued a more powerful approach. 

In some cases, under the null hypothesis of no treatment effect, 

behavioral events can be assumed to follow a stationary Poisson process, and a 

statistical test to determine whether event rate changes during treatment can be 

based on the binomial distribution, as described in more detail in DeRuiter and 

Solow (in press). However, if the Poisson assumption is not correct - for 

example, if behavioral events occur in bouts - then the binomial test can give 

misleading results. In such cases, one option is to find a test that is valid under a 

particular alternative to the Poisson model. Unfortunately, while it is often easy 

to demonstrate that a point process is not Poisson, it can be difficult to specify an 

appropriate alternative model. Because the sperm whale echolocation buzz time 

series have a low but significant amount of autocorrelation, and because it is 

reasonable to expect that sperm whale foraging events occur in bouts as the 

whale encounters patches of prey, I believe that the Poisson assumption may be 

incorrect for my data. 

The rotation test is a simple nonparametric method that can be used to 

analyze behavioral point process data even if the process generating the data is 
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unknown, and if the dataset is auto-correlated, contains bouts or clumps of 

events, or is otherwise sequentially dependent. The general approach of the 

rotation test was originally proposed by Harkness & Isham (1983) for testing 

association between two two-dimensional point processes observed on a 

rectangle. The method has also been applied to one-dimensional point process 

data (behavioral time-series, Miller et al., 2004a; Miller et al., 2004b). However, 

no formal description of the test (including assessment of its validity and power) 

has been published to date; with Andy Solow, I have submitted such a 

description for publication (DeRuiter and Solow, in press; see Appendix A for full 

text). Here, I describe the rotation test more informally by detailing a specific 

application: detection of changes in sperm whale buzz rate in response to 

airguns. 

To apply the rotation test to the sperm whale buzz rate data, I began by 

calculating my test statistic, the observed number of buzzes during control 

conditions (Nc), for each individual whale. Nc is higher if buzz rate is elevated 

during control conditions relative to experimental conditions. To estimate the 

distribution of Nc under the null hypothesis of no change in buzz rate, I used the 

rotation test method to resample the data. The rotation test is similar to other 

randomization procedures in that it involves resampling the dataset to determine 

a distribution (or confidence bounds) for a parameter of interest; however, it 

preserves the sequential order of data points, so it can be used for datasets with 

sequential dependence. For each rotation of the dataset, I kept the time-series 

of buzzes intact, and held the duration of the airgun exposure constant, but 

randomly shifted the nominal start time of the exposure to a random time within 

the experiment. I then calculated Nc,rotated for the rearranged dataset. I repeated 

the process 10,000 times to construct a distribution of Nc,rotated and to calculate 

the p-value of the test (the probability of Nc,rotated being at least as large as the Nc 

value observed in the data). I applied the test to each of the seven whales 

studied, then used Fisher's method to account for multiple statistical tests and 
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obtain a combined p-value indicating whether at least one of the seven whales 

showed a statistically significant reduction in foraging rate during airgun exposure 

(Fisher, 1948). I also tested the hypothesis that all seven whales showed a 

concerted reduction in foraging rate during airgun exposure; for that test I used 

the sum of Nc (for all whales) as my test statistic, and again determined its 

distribution with a rotation test. 

I also estimated the power of the rotation test for the individual-whale 

hypothesis tests by testing synthetic datasets whose durations and event rates 

were approximately equal to the mean dataset duration and event rate. The 

model underlying the sperm whale buzz rate process is of course unknown, so 

the synthetic datasets I used were simulated using a variety of point process 

models with varying degrees of event "dumpiness" and autocorrelation: a 

stationary Poisson process, a one-dimensional Thomas process (Thomas, 1949), 

and an exponential autoregressive (EAR) model (Lawrance and Lewis, 1979). 

5.2.3 Markov Chain Models: Background 

Markov chain models are a subset of matrix models, a group of 

mathematical models that describe changes between states of some quantity of 

interest over time (for example, the number of individuals in a population that are 

in various developmental states, or the behavioral state of an animal). Discrete- 

time matrix models are generally formulated as a system of linear equations, 

AT,+l = pjv,, where N is a vector of the number or proportion of individuals in each 

state, subscripts indicate time, and P is a matrix containing the probabilities of 

transition between states per unit time. Markov chain models differ from matrix 

models in general because they include the additional assumption that the 

current state of a model depends only on previous states. The order of a Markov 

chain is defined as the number of previous states required to determine the 

current state (so the current state depends on the immediately previous state in a 
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first-order Markov chain, the two previous states in a second-order Markov chain, 

and so on). 

In ecology, matrix models (usually discrete-time, discrete-state models) 

have been used extensively to characterize the population size, spatial 

distribution, or life history of many species, and the related mathematical theory 

is well developed (Tuljapurkar and Caswell, 1997; Caswell, 2001; Kot, 2001; 

Keyfitz and Caswell, 2005; Madsen et a/., 2006). However, such models have 

only rarely been applied to behavioral time series. One study advocated Markov 

chain matrix models as an alternative method for determination of animal time 

budgets, constructing a discrete-time, discrete-state model of beaver behavior as 

a case study (Rugg and Buech, 1990). Another set of experiments fit a discrete- 

time, discrete-state Markov chain model to dolphin behavior data collected in the 

presence and absence of tourist boats to analyze the effects of tourist boats on 

dolphin behavior at two New Zealand field sites (Lusseau, 2003; 2004). Finally, 

Haccou and Meelis (1992) described statistical techniques to select and fit 

discrete- and continuous-time Markov and semi-Markov models of animal 

behavior data, including examples of model application to data on rats and 

rhesus monkeys. In each case, researchers were able to draw statistically sound 

conclusions from studies of relatively few individuals. These few examples 

illustrate the efficacy of matrix modeling techniques for analysis of animal 

behavior data, while highlighting the opportunity for increased application of such 

analyses. I have fit a continuous-time semi-Markov chain model to sperm whale 

foraging behavior, and used the model to assess changes in foraging behavior in 

response to airgun exposure. 

5.2.4 Sperm Whale sMC Model Construction 

Female and immature sperm whales perform stereotyped dive behavior. 

They consistently spend about 40 minutes of each hour doing deep dives (to 

400-1000m depth), and about 20 minutes resting near the sea surface. While 
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they are underwater, after they have reached 200-300m depth, they begin to 

make regular clicks - powerful, relatively regularly spaced echolocation clicks 

(Watwood er a/., 2006). For the purposes of this study, I defined the foraging 

portion of a sperm whale dive as the time between initial onset and final end of 

regular clicking, and considered only data from foraging periods in all analyses 

(Fig. 4.1). 

Time (hours) 

Figure 5.1. Top panel: Dive profile of the tagged sperm whale. The grey line 

indicates whale depth, and black circles indicate the times of echolocation 

buzzes. Airgun exposure periods are shaded gray. Black lines connecting the 

top and bottom panels illustrate how dive ascents, descents and surface periods 

were cut from the dataset to produce the foraging behavior time-series we 

analyzed. Only foraging periods (indicated by yellow shading) were included in 

the foraging behavior time-series. Bottom Panel: Time-series of echolocation 

buzzes produced by the sperm whale during foraging periods. Black dots 

indicate the times of buzzes, and gray shaded areas indicate airgun exposure 

periods. 
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Sperm whale foraging can be divided into three distinct phases, each of 

which is characterized by distinctive sounds: 

• Search Phase The whale is echolocating, but has not yet begun a capture 

attempt. The whale produces regularly spaced, high-level echolocation 

clicks. 

• Capture Phase The whale captures or attempts to capture a prey item, 

and produces an echolocation buzz. Buzzes are series of clicks with a 

much faster repetition rate than search clicks; to human ears they sound 

like a buzz or creak that varies in pitch over a few (1-10 or so) seconds. 

• Pause Phase During pauses, the whale is silent for a period of a few 

seconds (and thus is not actively echolocating). 

I modeled sperm whale foraging behavior as a continuous-time three-state 

semi-Markov process, in which whales can occupy three possible behavioral 

states (Search, Capture, and Pause); I converted the field data for each whale 

into a time-series of state-to-state transitions based on the dtag audio records. 

The order of a Markov process is defined as the number of previous states 

required to determine the current state (so the current state depends on the 

immediately previous state in a first-order Markov chain, the two previous states 

in a second-order Markov chain, and so on). In this study, I considered only first- 

order processes. There was no obvious evidence for higher-order sequential 

dependence in the behaviors I analyze (data not shown). My first-order model 

assumed that the next behavioral state depended only on the current state, so I 

defined a time-independent state-to-state transition probability matrix as follows. 

Given that a transition from behavioral state)occurs at a certain time, the 

probability that the transition is from state; to another state k is a>* (the row;', 

column k element of the transition matrix >4). 

The dtag audio sampling frequency is orders of magnitude greater than 

the frequency with which whales change behavioral states, so my data are 

effectively sampled in near-continuous time; in addition, there is no obvious 
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discrete time-step size to use that would be behaviorally relevant for a foraging 

sperm whale. Therefore, I chose to model foraging behavior in continuous time 

rather than discrete time.   Standard continuous-time Markov chains use 

exponential distributions for the waiting times2, but I chose to use state-specific 

gamma distributions, as exponential distributions fit my data poorly (e.g., Fig. 

5.2). (This change in waiting time distributions means that my model is 

technically a semi-Markov chain (sMC) rather than a Markov chain.) In 

summary, the foraging behavior model includes 

1) A transition matrix of probabilities of transitions from each state to the 

others, and 

2) state-specific probability distributions that describe the "waiting times," 

or the expected time a whale will spend in a given state before switching 

states. 

2 If the whale is in a certain state), it will remain in that state for a certain "waiting time" before 
changing to the next state; each observed waiting time is generally assumed to be a random 
sample from a state-specific probability distribution. 
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Figure 5.2. Waiting time histograms for a representative whale (165b) with 

exponential (red) and gamma (blue) distributions fit to the data. All x axes 

indicate time in seconds, while y axes indicate number of observations. 
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5.2.5 Fitting the sMC Model and Checking Model Goodness-of-Fit 

I fit the model to the data for each whale by calculating the maximum 

likelihood estimates of: 1) the gamma distribution parameters that best fit the 

data waiting time distributions (using the function gamfit in Matlab) and 2) the 

transition probabilities {ajk = —-, where A/,* is the number of transitions from 

state y to state k, and Nj is the total number of times a whale is in state y; Haccou 

and Meelis, 1992). 

I fit the model described above to the data under the null hypothesis that 

the same Markov chain underlies the behavior of all whales during all conditions, 

and also under several nested alternate hypotheses: 

HAI) The sMC underlying whale behavior varies from whale to whale 

(inter-individual variation is significant). 

HA2) The sMC underlying whale behavior changes during airgun exposure. 

I used several approaches to check the model's goodness of fit to the data 

before carrying out hypothesis tests. First, I used graphical methods to check for 

time-homogeneity of waiting times and transition probabilities (waiting times: 

cumulative bout-length plots and log-bout-length plots (Haccou and Meelis, 

1992); transition probabilities: time-series of transition probabilities determined 

from blocks of 50 observed states). I also compared the maximized log 

likelihoods of our datasets to the distributions of maximized log likelihoods of 

equal-duration datasets simulated under the best-fit sMC models; if the model fit 

the data poorly, one would expect the data likelihoods to be small in comparison 

to the simulated data likelihoods. 

5.2.6 sMC Model Hypothesis Tests and Significance Assessment 

I next used likelihood ratio tests to determine whether the null hypothesis 

should be rejected in favor of the alternates, assessing the significance of the 

result with both a parametric bootstrap and a rotation test (DeRuiter and Solow, 

in press). For the parametric bootstrap, I simulated data under the null 
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hypothesis to construct a probability distribution for the likelihood ratio test 

statistic, which allowed me to assign a p-value to the observed test statistic. I 

first tested whether there was significant inter-individual variation (by comparing 

a model in which parameters were identical for the group of seven whales to a 

model in which each whale had individual-specific model parameters) (HAi). 

Then I tested for effects of airgun exposure (by comparing a model with one set 

of parameters for all time periods to a model that allowed the parameters to be 

different during airgun exposure) (HA2)- I carried out the test for each whale 

individually (to look for individual effects), and also for concerted change by the 

set of seven whales (by summing the likelihood ratios for all whales). 

A major assumption of the sMC model is that sperm whale foraging 

behavior is homogeneous in time (that is, the state-to-state transition probabilities 

and waiting times do not vary as functions of time) in the absence of any 

treatment effect. That assumption is probably true on average, and my model 

goodness-of-fit tests provided qualitative checks for some possible types of 

deviation from the assumption. However, I expect that the homogeneity 

assumption is not strictly true. Waiting times and especially transition 

probabilities may change cyclically or episodically (diumally, over the course of a 

foraging dive, or as a whale encounters prey patches of different species or 

densities). Such fluctuations are difficult to detect, and difficult or impossible to 

parameterize explicitly in the model. If one occurred during an airgun exposure 

period, the parametric-bootstrap test described above might incorrectly conclude 

that airgun exposure caused a significant change in behavior. Rather than 

assuming that effects of such behavior fluctuations on the results were 

insignificant, I carried out a second round of analyses in which I replaced the 

parametric bootstrap with the rotation test described earlier in this paper. The 

rotation test is a more conservative, nonparameteric randomization technique 

that controls for fluctuations in the time-series parameters, but it has somewhat 

lower power than the parametric bootstrap. In the absence of model-data 
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mismatch, the rotation test and parametric bootstrap tests should return the 

same p-values (as long as both tests have sufficient power to detect the 

observed effect size). 

Finally, in order to check the validity of my hypothesis tests, I applied them 

to dtag datasets from six sperm whales that were not part of the airgun exposure 

experiment. I selected a random one-hour period in each of the six datasets as 

the sham "airgun exposure" period, then applied the sMC model and hypothesis 

tests to each dataset exactly as for the airgun exposure datasets.  I expected that 

if the tests were valid, they would not return significant p-values. 

5.3 Results 

5.3.1 Rotation Test Results 

Table 5.2 shows the p-values of all rotation tests for changes in buzz 

rates; Figure 5.3 shows the results in graphical form, including 95% confidence 

intervals for the expected buzz rate during airgun exposure (based on the 

distribution of values obtained by applying the rotation test). Applying Fisher's 

(1948) method to the rotation test results for the seven individual whales 

indicated that at least one of the seven whales reduced its foraging rate by about 

60% during airgun exposure (p = 0.036). However, I did not find strong evidence 

for a concerted reduction in foraging rate during airgun exposure by all seven 

whales (p=0.19). Figure 5.4 shows the power of the test to detect changes in 

foraging rate in response to airgun exposure, for simulated datasets with 

numbers of events similar to the individual sperm whale records. (The different 

types of synthetic datasets displayed have varying types and amounts of 

sequential dependency; it is not known which, if any, most closely approximates 

the sperm whale data.) For the data types shown in Figure 5.4, the test does not 

have high power to detect very small changes in foraging rate (power > -0.8 only 

for >~15% reduction by all seven whales or >~40% reduction by a single whale). 
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Individual Whales p-value (rotation test) 

1 (253a) 0.70 

2 (254a) 0.54 

3 (254b) 0.069 

4 (254c) 0.0021 

5 (164a) 0.92 

6 (165a) 0.72 

7 (165b) 0.13 

Group of 7 whales 

Fisher's method 0.036 

Concerted change 0.19 

Table 5.2. Results of rotation tests. The null hypothesis is that buzz rate was the 

same during airgun exposure and control conditions, while the alternate 

hypothesis was that the buzz rate decreased during airgun exposure. The 

Fisher's method p-value accounts for multiple statistical tests, indicating whether 

at least one of the seven whales tested showed a statistically significant 

reduction in foraging rate during airgun exposure. The concerted change p-value 

tests the hypothesis that all seven whales reduced their buzz rate during airgun 

exposure. 
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Figure 5.3. Rate of buzz production during airgun exposure. Black columns 

show observed buzz rate during airgun exposure for each whale. White columns 

show expected buzz rate during airgun exposure under the null hypothesis that 

exposure did not reduce buzz rate (column height is mean value from rotation 

tests, and error bars indicate 2.5% and 97.5% percentiles). An asterisk indicates 

the result that is statistically significant at the p<0.05 level. 
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k (factor by which in inter-event time increased during experimental period) 

Figure 5.4. Power of the rotation test to detect reductions in buzz rate at the 

p<0.05 level for synthetic datasets with duration and event rate similar to those of 

the sperm whale datasets. 

5.3.2 sMC Model Goodness-of-Fit Assessment 

Figures 5.5 - 5.12 plot cumulative waiting times versus event number for 

all seven whales combined (Fig. 5.5) and for each whale individually. Changes 

in the slope of a cumulative waiting time plots indicate change points in the time- 

series of waiting times (Haccou and Meelis, 1992). Such changes in slope are 

present, though rather subtle, in the figure containing data for all seven whales 

(Fig. 5.5); the variation is clearest in the search waiting times. This observation 

provided initial evidence that individual variability in foraging behavior must be 

taken into account in the model fitting and analysis. As shown in Figures 5.6 - 

5.12, the slopes of the cumulative waiting time plots for individual whales did not 

vary much with event number, supporting the idea that the waiting time 

distributions were time homogeneous. 
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Figure 5.5. Cumulative waiting time vs. event number for the set of seven 

whales. Abrupt changes in the slope of the line would indicate changes in the 

waiting times. 
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Figure 5.6. Cumulative waiting time vs. event number for whale 253a. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. 

166 



,x 10 

t?2000 
(A 

2! 1000 
3 

Cumulative Waiting Times vs. Event No., Whale 254a 

250 300 

150     200 
Event Number 

250 300 

350 

180 

350 

Figure 5.7. Cumulative waiting time vs. event number for whale 254a. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. 
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Figure 5.8. Cumulative waiting time vs. event number for whale 254b. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. The 

vertical jump around event 75 in the pause data is the result of one 

extraordinarily long pause. 
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Figure 5.9. Cumulative waiting time vs. event number for whale 254c. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. 

169 



Cumulative Waiting Times vs Event No , Whale 164a 

u 
en 

50 100 200 250 300 350 

2000 

£ 1000 

Q. 
CD 
O 

„2000 

20 40 60 80 100        120 140        160 180 200 

150 200 
Event Number 

300 350 

Figure 5.10. Cumulative waiting time vs. event number for whale 164a. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. 
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Figure 5.11. Cumulative waiting time vs. event number for whale 165a. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. 
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Figure 5.12. Cumulative waiting time vs. event number for whale 165b. Abrupt 

changes in the slope of the line would indicate changes in the waiting times. 

I also plotted the logarithm of waiting time vs. event time for the set of 

seven whales (Fig. 5.13) and for each whale individually (Figs. 5.14 - 5.20). In 

Figures 5.13 - 5.20, a change in the distribution of waiting times would be 

indicated by a vertical shift in the positions of successive data points (Haccou 

and Meelis, 1992). Several of those shifts are visible in Figure 5.13; for example, 

search waiting times seem to be slightly higher between 15-30 hours, and pause 

waiting times are slightly lower from 30-35 hours. These shifts indicate that there 

is significant whale-to-whale variation in waiting times. No shifts are apparent in 

Figures 5.14-5.20, again supporting the idea that state-specific waiting times are 

constant with time for any individual whale. 
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Figure 5.13. Logarithm of waiting time as a function of event time for the set of 

seven whales. Vertical shifts in the data points would indicate temporal shifts in 

waiting time distribution. 
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Figure 5.14. Logarithm of waiting time as a function of event time for whale 

253a. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 
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Figure 5.15. Logarithm of waiting time as a function of event time for whale 

254a. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 
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Figure 5.16. Logarithm of waiting time as a function of event time for whale 

254b. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 
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Figure 5.17. Logarithm of waiting time as a function of event time for whale 

254c. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 

176 



Log Waiting Times vs. Time, Whale 164a 
10 

sz 
o 

en *' *   .   . ' • '" '• ••>•.• 

°0 12345678 
4 

i_ • 
Z5 • * 

o 
°0 12345678 

^     »..     ..••%•.:••/....••-» v'.-.f -. '.v.   •-•"   ..*•% •••••;• ...•-•• 
0 
0 12345678 

Time (hours) 

Figure 5.18. Logarithm of waiting time as a function of event time for whale 

164a. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 
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Figure 5.19. Logarithm of waiting time as a function of event time for whale 

165a. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 
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Figure 5.20. Logarithm of waiting time as a function of event time for whale 

165b. Vertical shifts in the data points would indicate temporal shifts in waiting 

time distribution. 

Figures 5.21 - 5.23 show the temporal variability in between-state 

transition probabilities. The figures show data from the seven analyzed whale 

datasets, all seven whales (considered as one dataset), and two simulated 

datasets synthesized under the sMC model. (The synthetic datasets had 

durations of seven hours, similar to the aggregate duration of the real datsets, 

and the model parameters used for the simulations were average values from the 

real datasets). In each figure, the main data points are the transition probabilities 

from the whole datasets. Error bars were determined by analyzing subsets of the 

data, and indicate the minimum and maximum values obtained by calculating 

transition probabilities for each possible subset of 50 consecutive states. (The 

choice of 50 events is arbitrary.) Figure 5.21 shows variability in transitions from 

search state, Figure 5.22 transitions from capture state, and Figure 5.23 
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transitions from pause state. In ail cases, the observed temporal variability in 

data transition probabilities does not greatly exceed the variability observed in 

the synthetic datasets. These data qualitatively support the sMC model 

assumption that the data transition probabilities are constant with time. However, 

it is difficult to assess the validity of that assumption more quantitatively. Of the 

seven whales studied, whales 254b, 254c, and 165a show temporal variability in 

transition probabilities that matches or slightly exceeds than that seen in the 

more variable of the two simulated datasets. The assumption of time- 

homogeneous transition probabilities is not as well-supported for those three 

whales. 
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Figure 5.21. Variability in the probability of transition from search state to search, 

capture, or pause states. Data are shown for the seven individual whale 

datasets analyzed, all seven whales considered as one dataset, and two 

synthetic datasets of similar duration synthesized under the sMC model. 
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Figure 5.22. Variability in the probability of transition from capture state to 

search, capture or pause states. Data are shown for the seven individual whale 

datasets analyzed, all seven whales considered as one dataset, and two 

synthetic datasets of similar duration synthesized under the sMC model. 
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Figure 5.23. Variability in the probability of transition from pause state to search, 

capture, or pause states. Data are shown for the seven individual whale 

datasets analyzed, all seven whales considered as one dataset, and two 

synthetic datasets of similar duration synthesized under the sMC model. (Pause 

to pause transition probability is always zero, in both real and simulated 

datasets.) 

Table 5.2 shows the maximized log-likelihoods of the seven datasets 

under the null hypothesis that whale behavior is the same during airgun exposure 

and control conditions. The table also indicates the percentile occupied by the 

data log-likelihoods in a distribution of log-likelihoods of synthetic sMC datasets 

synthesized for the parametric bootstrap significance assessment. If the sMC 

model fit the data poorly, the observed data log-likelihoods would probably be 

much lower than most of the synthetic-data likelihoods, occupying low percentiles 

(or being smaller than all the synthetic likelihoods). In fact, the data likelihoods 

are in the center of the synthetic likelihood distributions, indicating a relatively 

good fit between the sMC model and the datasets. 
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Whale Log-Likelihood (null) Percentile 

1 (253a) -892.7 56 

2 (254a) -3177 50 

3 (254b) -3143 54 

4 (254c) -3204 54 

5 (164a) -3075 53 

6 (165a) -5087 51 

7 (165b) -7168 50 

Table 5.2. Maximized log-likelihoods of the seven datasets under the null 

hypothesis (whale behavior is the same during airgun exposure and control 

conditions) and percentiles occupied by the data log-likelihoods in distributions of 

log-likelihoods of synthetic sMC datasets synthesized for the parametric 

bootstrap significance assessment. If the sMC model fit the data poorly, the 

observed data log-likelihoods would be much lower than most of the synthetic- 

data likelihoods, occupying low percentiles. 

5.3.3 sMC Model Results 

Table 5.3 shows the p-values obtained using the sMC model/likelihood 

ratio test method, both for the parametric bootstrap and the rotation test. The 

tests indicated very clearly (p = 0.0016 or less) that foraging behavior varied from 

individual to individual, and that mean model parameters (determined by 

averaging over data from all 7 whales) described individual behavior very poorly 

compared to parameters fit for each individual whale. Consequently, I tested for 

effects of airgun exposure using a model that allowed model parameters to vary 

from whale to whale. 

All group tests indicated that whale behavior was significantly different 

during airgun exposure and control periods. The p-values for the rotation tests 

were all higher than those obtained with the parametric bootstrap. Even referring 
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to the rotation test results, however, two of the seven whales (254b, p = 0.040 

and 254c, p = 0.025) showed a significant change in foraging behavior during 

airgun exposure, and one more showed a marginally significant response (whale 

165b, p = 0.082). Application of Fisher's test indicated that at least one of the 

observed significant results remains significant at the p = 0.05 level after 

correcting for the effects of applying multiple statistical tests (p = 0.028). In 

addition, the test for a concerted change by all seven whales returned a 

significant p-value of 0.046. 

Hypothesis Tested 

p-value 

(parametric 

bootstrap) 

p-value 

(rotation) 

Individual Variation between 7 

whales? 
0 0.0016 

Individual Whales: 

Changes during airgun 

exposure? 

1(253a) 

2(254a) 

3(254b) 

4 (254c) 

5 (164a) 

6 (165a) 

7 (165b) 

0.08 

0.005 

0 

0 

0.22 

0.042 

0.0012 

0.44 

0.37 

0.04 

0.025 

0.29 

0.65 

0.082 

Group of 7 whales 

Fisher's Method 

Concerted Change 

0 

0 

0.028 

0.046 

Table 5.3. Results of hypothesis tests (significance assessed by likelihood ratio 

test/parametric bootstrap). 
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Figures 5.24 - 5.30 show the gamma distributions that best fit the waiting 

time data for each whale during airgun exposure and control conditions, along 

with the range of those distributions expected under the null hypothesis (as 

determined by the parametric bootstrap). Figures 5.31 - 5.37 show the same 

data, but with expected distributions determined by the rotation method. For 

whales 254b, 254c, and 165b, which showed significant or marginally significant 

behavior changes in response to airguns, the most notable changes in waiting 

times were increases in waiting times in search and capture states, reductions in 

pause waiting times (especially 254b), and increased variability in capture and 

pause waiting times. 
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Figure 5.24. Changes in waiting times during airgun exposure for whale 253a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.25. Changes in waiting times during airgun exposure for whale 254a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.26. Changes in waiting times during airgun exposure for whale 254b. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.27. Changes in waiting times during airgun exposure for whale 254c. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.28. Changes in waiting times during airgun exposure for whale 164a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.29. Changes in waiting times during airgun exposure for whale 165a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.30. Changes in waiting times during airgun exposure for whale 165b. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by parametric bootstrap 

simulations (1000 of 10,000 simulation results plotted). 
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Figure 5.31. Changes in waiting times during airgun exposure for whale 253a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 
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Figure 5.32. Changes in waiting times during airgun exposure for whale 254a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 
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Figure 5.33. Changes in waiting times during airgun exposure for whale 254b. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 
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Figure 5.34. Changes in waiting times during airgun exposure for whale 254c. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 
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Figure 5.35. Changes in waiting times during airgun exposure for whale 164a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 
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Figure 5.36. Changes in waiting times during airgun exposure for whale 165a. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 

197 



0 

Search Waiting Times, Whale 165b 

50 100 150 200 250 
Capture Waiting Times. Whale 165b 

5 10 15 20 
Pause Waiting Times, Whale 165b 

15 20 

300 

25 

25 

Figure 5.37. Changes in waiting times during airgun exposure for whale 165b. 

All x axes show time in seconds, and y axes probability. Green lines are the 

gamma distributions that best fit the waiting time data under the null hypothesis, 

and red lines are those that best fit the data from the airgun exposure period. 

Black lines show the expected variability of the airgun exposure line under the 

null hypothesis of no airgun effect, as determined by rotation test data 

resampling (1000 of 10,000 simulation results plotted). 

Figures 5.38 - 5.44 and 5.45 - 5.51 plot the observed changes in 

transition probabilities during airgun exposure periods, with error bars indicating 

expected values under the null hypothesis as determined by the parametric 

bootstrap and rotations, respectively. For whales 254b, 254c, and 165b, which 

responded significantly or marginally significantly to airgun exposure, the most 

notable changes in transition probabilities were as follows: capture to search 

transitions were replaced by capture to pause transitions during exposure, and 

search to capture transitions were replaced by search to pause transitions. 
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Figure 5.38. Changes in transition probabilities during airgun exposure for whale 

253a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.39. Changes in transition probabilities during airgun exposure for whale 

254a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.40. Changes in transition probabilities during airgun exposure for whale 

254b. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.41. Changes in transition probabilities during airgun exposure for whale 

254c. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.42. Changes in transition probabilities during airgun exposure for whale 

164a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.43. Changes in transition probabilities during airgun exposure for whale 

165a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.44. Changes in transition probabilities during airgun exposure for whale 

165b. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 parametric bootstrap simulations under the null hypothesis of no airgun 

effect. 
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Figure 5.45. Changes in transition probabilities during airgun exposure for whale 

253a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 
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Figure 5.46. Changes in transition probabilities during airgun exposure for whale 

254a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 
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Figure 5.47. Changes in transition probabilities during airgun exposure for whale 

254b. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 
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Figure 5.48. Changes in transition probabilities during airgun exposure for whale 

254c. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 
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Figure 5.49. Changes in transition probabilities during airgun exposure for whale 

164a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 

210 



n 
o 

0.15 
Changes in Transition Probability During Airgun Exposure, Whale 165a 

m    0.1 c 
03 

1  0.05- 

-Q 
O 0- 

0) 
l_ 

3 
o 
Q. 
X 

LU 
C 

D) 

<   -0.2 

-0.1 • 

•0 15- 

1                   1 i              i i 1  —i  

n ->r- ""1 m UU   • 

- 

• i              » » 
S to S       S to C       S to P       C to S       C to P       P to S       P to C 

Figure 5.50. Changes in transition probabilities during airgun exposure for whale 

165a. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 
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Figure 5.51. Changes in transition probabilities during airgun exposure for whale 

165b. S stands for search, C for capture, and P for pause. Bar heights indicate 

observed difference between transition probabilities calculated for the airgun 

exposure period only and for the entire experiment (under the null hypothesis). 

Error bars show the maximum and minimum observed differences obtained in 

10,000 rotation test runs under the null hypothesis of no airgun effect. 

Table 5.4 shows the p-values obtained by likelihood ratio tests (with 

parametric bootstrap or rotation), carried out on data from sham-exposed sperm 

whales (which were never actually exposed to airgun sounds). The parametric 

bootstrap method detected significant "airgun" effects on four of six whales 

tested, and applying Fisher's test (p = 0) indicated that the significant results 

were unlikely to have been simply a consequence of multiple statistical tests. On 

the other hand, the rotation test results were marginally significant for one of the 

six whales tested (p = 0.095), and that result could likely have been a side effect 

of multiple hypothesis tests (Fisher's test, p = 0.24). 
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Whale 
p-value 

(parametric bootstrap) 

p-value 

(rotation test) 

200a 0.0001 0.095 

204a 0.49 0.82 

265a 0.24 0.53 

275b 0.0005 0.17 

239a 0 0.16 

240c 0.018 0.48 

Fisher's test 0 0.24 

Table 5.4. Results of significance tests (for changes in individual-whale 

foraging behavior in response to sham airgun exposure) on non-exposed sperm 

whales. 

5.4 Discussion 

My results indicate that airgun exposure - even at the low exposure levels 

observed in this experiment - can result in large reductions in foraging (buzz) 

rate for some individual sperm whales. A more detailed analysis of foraging 

behavior also indicated behavioral changes during airgun exposure, most notably 

increased duration of search and capture states, increased variability of capture 

and pause state durations, replacement of capture to search transitions with 

capture to pause transitions, and replacement of search to capture transitions 

with search to pause transitions. Overall, these changes suggest increased time 

and effort spent searching for and attempting to capture each prey item, and 

increased occurrence of pauses. Post-capture pauses during echolocation may 

be used for prey-handling in some bat species (Acharya and Fenton, 1992; 

Britton and Jones, 1999; Surlykke etal., 2003). If the same is true for sperm 

whales, the increased number of transitions into pause state during airgun 

exposure may indicate increased time spent manipulating and handling prey or 

possibly increased prey capture success rate. However, as described in Chapter 

2 of this thesis, post-buzz pauses do not seem to play a critical role in post- 

213 



capture prey handling for porpoises; they handle and swallow prey while 

producing echolocation buzzes in some cases, and not all successful captures 

are followed by pauses. 

The two whales whose behavior changed most radically during airgun 

exposure (254b and 254c) were also the two who were most closely approached 

by the airgun source vessel during the experiments (although the range of airgun 

sound levels they received overlapped significantly with those of most of the 

other whales; see Table 5.3). Although the two whales were tagged and 

underwent airgun exposure together, they were tagged in a large aggregation of 

whales, and they were not observed traveling together at any point while they 

were tagged (Miller et al., 2003, P.J.O. Miller, Pers. Comm.). 

Although all available indicators suggested relatively good fit of the sMC 

model to the sperm whale datasets, testing the parametric bootstrap and rotation 

significance tests on data from non-exposed whales indicated that the parametric 

bootstrap detected significant differences in behavior between sham airgun 

exposure and control periods much more frequently than expected by chance, 

assuming that no real behavior-changing stimulus was present. The rotation 

test, on the other hand, seemed to perform much better as a significance- 

assessment tool for the sMC model. For this reason, I believe that the rotation 

test results are superior to the parametric bootstrap results, and I have based my 

conclusions and interpretations on the rotation test results. 

The rotation test and sMC modeling approaches I employed are quite 

versatile, applicable at the individual or group level.  Here, I used them to test for 

effects of the presence of an airgun noise source, but if behavioral noise 

response datasets that include reliable data on exposure level become available, 

both methods could be extended to model effect size as a function of exposure 

level. Because of this versatility, my methods may prove useful in studies with 

the long term goal of predicting the effect of long-term changes in foraging on 

population parameters. The ability to detect reductions in foraging rates may be 
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of particular interest, since reduced foraging rates could result in lower energy 

stores and consequent reductions in individual reproductive fitness and 

population growth rates. 

In addition to testing hypotheses about airgun exposure, my sMC analysis 

confirmed that there are significant differences in foraging behavior between 

individual sperm whales. This result highlights the utility of using methods like 

those described in this paper (which can account for variations between animals) 

to detect small effects that might be masked by inter-individual variability if 

analysis required pooling data from many individuals. 

My failure to detect changes in foraging rate or in response to airgun 

exposure for the majority of the whales studied does not necessarily indicate that 

exposure has no population impacts, for several reasons. First, some whales 

displayed an apparent change in behavior (detected by the sMC analysis) that 

did not correspond to a detectable reduction in buzz rate. In addition, I detected 

significant inter-individual variability in foraging behavior among the whales in our 

study; it is possible that response to noise may similarly vary from whale to 

whale. For example, if the reduction in foraging tends to occur in reproductive 

females, it could have a larger impact on reproduction than if it occurs among 

males; female reproductive success requires large energetic investments in 

pregnancy and lactation, so female fitness is more closely linked to physical 

condition. It is also reasonable to expect that different age or sex classes, and 

individual whales with different histories of exposure, would have different 

patterns of behavioral response to airgun sounds. The sex of five of the seven 

individuals in this study was determined by genetic analysis (see Table 5.1), and 

they were all female, so the results of this study do not allow me to draw any 

conclusions about sex differences in airgun response. 

The sperm whales in this study were exposed to relatively low levels of 

airgun noise (maximum 147 dB re 1uPa rms; most airgun source levels are 

>230dB), well below the regulated exposure level (National Marine Fisheries 
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Service, 2003), so it is somewhat surprising that any effects at all were 

detectable. Therefore, the results presented here may suggest that current 

regulation requirements should be reconsidered. 

Although the tests I employed have far greater power than methods that 

require converting behavioral time-series to a mean event rate for each animal, 

the power of our statistical tests to detect small changes in individual whales' 

foraging behavior was still lower than optimal. In future experiments, increasing 

the duration of the experiment (both control and airgun exposure periods), 

increasing the exposure levels, and increasing the number of animals involved 

would further increase available power to detect behavioral changes. 
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Chapter 6. Conclusions 

6.1 Implications of the Thesis 

The preceding chapters of this thesis have explored quantitative 

descriptions of toothed whale echolocation and foraging behavior (Chapters 2 

and 5), including assessment of the effects of noise on foraging behavior 

(Chapter 5) and the potential influence of ocean acoustic propagation conditions 

on biosonar detection ranges (Chapter 3) and whale noise exposure (Chapter 4). 

In addition to presenting some novel basic science findings, the case studies 

presented in this thesis have implications for future work and for management. 

In Chapter 2, I presented results that described how porpoises vary the 

rate and level of their echolocation clicks during prey capture events; detailed the 

differences in echolocation behavior between different animals and in response 

to differences in prey fish; and showed that, unlike bats, porpoises continue their 

echolocation buzz after the moment of prey capture. 

Chapters 3-4 provided case studies that emphasized the importance of 

applying realistic models of ocean acoustic propagation in marine mammal 

studies. These chapters illustrated that, although using geometric spreading 

approximations to predict communication/target detection ranges or noise 

exposure levels is appropriate in some cases, it can result in large errors in other 

cases, particularly in situations where refraction in the water column or multi-path 

acoustic propagation are significant. 

Finally, in Chapter 5, I applied a rotation test and a semi-Markov chain 

model to test for changes in sperm whale foraging behavior in response to airgun 

noise exposure. Test results indicated that, despite the low-level exposures 

experienced by the whales in the study, some (but not all) of them reduced their 
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buzz production rates and altered other foraging behavior parameters in 

response to the airgun exposure. 

6.2 Future Work 

The results presented in this thesis suggest several promising directions 

for future work. Many of them are mentioned in the discussion sections of the 

preceding chapters, but priorities are summarized briefly below. 

6.2.1 Porpoise Tag Data Analysis 

The porpoise prey capture tag experiments examined in Chapter 2, 

supplemented by additional prey capture trials carried out in April 2008 with 

increased tag audio gain, will provide a rich dataset for continued analysis. 

I have not yet investigated the tag movement data; analyzing it should 

complement the work to date on the acoustic data. 

In addition, preliminary analysis of the April 2008 data indicate that prey 

echoes may be detectable in the audio recordings.  If they are, I should be able 

to use the timing of echoes to calculate porpoise-prey range over the course of 

prey capture. Echo timing data will also allow me to test the hypothesis that 

porpoises avoid temporal overlap between prey echoes and non-target echoes 

(or outgoing clicks, though such overlap is unlikely given the short duration of 

porpoise clicks). In addition, it may be possible to estimate minimum prey 

detection ranges. Study of prey echoes may also help elucidate the echo 

characteristics available to porpoises as they decide whether or not to select a 

particular prey item. Finally, if I can measure the relative levels of prey echoes 

as porpoises approach prey fish, it will be possible to test the hypothesis that 

porpoises use transmit-side automatic gain control to maintain relatively constant 

echo levels as porpoise-fish range decreases. 

In addition to analysis of movement and echo data, further investigation of 

the acoustic data from the prey capture experiments will be possible. Analysis to 
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date indicates that the off-axis clicks recorded on the tag comprise several 

overlapping, reverberant arrivals. It is therefore likely that the frequency spectra 

of the recorded clicks do not accurately represent that of clicks recorded in the 

far field. However, it may be worthwhile to examine the temporal and frequency 

characteristics of clicks produced before, during and after prey capture in hopes 

of identifying an acoustic indicator of successful prey capture. If such an 

indicator exists, it would facilitate calculation of prey capture rates (rather than 

just buzz production rates) from field recordings of foraging behavior. 

I have also collected several tag datasets at the Fjord & Baelt Center that 

contain concurrent data on porpoise movements and social communication 

sounds, including adult-adult interactions, mother-calf interactions, and 

interactions between an adult male and a female calf. Although it is known that 

porpoises use clicks for intraspecific communication as well as echolocation, and 

the individual clicks used in their communication signals are thought to be 

acoustically indistinguishable from their echolocation clicks, neither the clicks nor 

the communications sounds have been well described in the peer-reviewed 

literature (but see Amundin, 1991; DeRuiter and Tyack, 2007; Clausen et a/., 

2008). Analysis and publication of the tag datasets could thus contribute 

significantly to the information available on this topic. 

6.2.2 Depth Distribution of Echolocating Porpoises 

The acoustic propagation model analysis in Chapter 3 indicated that 

porpoises might be able to take advantage of the effects of refraction in the water 

column to increase the range at which they can communicate and detect 

echolocation targets. Field experiments to collect hydrophone array and CTD 

data would allow me to test the prediction that porpoises adjust their depth 

distribution to take advantage of sound propagation channels in the water 

column. 
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6.2.3 Whale Foraging Behavior and Population Modeling 

Although the techniques applied in Chapter 5 were able to address the 

question of whether sperm whales changed their foraging behavior in response 

to airgun sound exposure, they were not sufficient to determine whether the 

observed behavior changes (if any) were large enough to affect whale population 

dynamics. In the future, I hope to use literature data and established modeling 

methods to relate changes in whale foraging rate to changes in reproductive 

success, and finally to relate individual reproductive success rates to population 

growth rates. Such modeling will facilitate a noise-management approach in 

which managers can regulate noise exposure levels based on the predicted 

effects of noise exposure on population growth rate. 

In the study presented in Chapter 5, I compared airgun exposure periods 

to control periods because exposure levels were so low that they were in many 

cases difficult to quantify (Madsen er a/., 2006). However, realistically, one would 

expect the intensity of sperm whale response to be a function of noise exposure 

level, as higher exposure levels would result in increased masking or annoyance. 

If future noise exposure experiments provided whale behavior data coupled with 

more extensive noise exposure level data, it would be possible to carry out 

similar analyses that would quantify the relationship between whale response 

magnitude and noise exposure intensity. Specifically, I could test the hypothesis 

that, between some minimum threshold level and some maximum effect level, 

sperm whale foraging rates are inversely related to noise exposure level. 

In addition to the controlled exposure experiments described in Chapters 

4-5, the Johnson-Tyack laboratory group has deployed Dtags on many other 

sperm whales in the Gulf of Mexico, the Atlantic Ocean, and the Mediterranean. 

Those recordings would provide a uniquely extensive dataset on which to carry 

out an analysis analogous to that described above for airgun exposure data. In 

this case, however, I would attempt to quantify the relationship between 
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background noise exposure level and sperm whale buzz rates, foraging behavior, 

and ultimately reproductive success and population dynamics. 

6.2.4 Comparative Studies of Toothed Whale Echolocation Signals & 

Strategies 

Although the work presented in this thesis is insufficient to allow detailed 

comparison of toothed whale echolocation signals and strategies, it does 

contribute basic biological data on the echolocation behavior of harbor porpoises 

as they locate and consume prey fish. Continued collection of this kind of data 

for various species, both in captivity and in the wild, will eventually form the basis 

for future interspecific comparative studies. At present, based on current 

knowledge of toothed whale echolocation signals and behavior, it is possible to 

compare the echolocation signals of harbor porpoises and sperm whales and 

speculate as to whether differences in echolocation signals, behavior, and 

physiology may relate to niche adaptation by these species. Hypotheses 

suggested by such speculation may be tested in future work related to 

interspecific comparative studies of toothed whale echolocation. 

Various types of echolocation signals have been recorded from toothed 

whales. Examples include the lower-frequency, broadband, multi-pulsed clicks of 

sperm whales (Zimmer et al., 2005b), the high-frequency, broadband, impulsive 

clicks of bottlenose dolphins (Au et al., 1974), the high-frequency, frequency- 

modulated clicks of Cuvier's beaked whales Ziphius cavirostris (Zimmer er al., 

2005a), and the very high-frequency, narrowband clicks of porpoises (Au era/., 

1999). The natural history, echolocation signals, and behavior of harbor 

porpoises and sperm whales are discussed in further detail in Section 1.2. 

Researchers have noted some connections between the ecological niches 

of cetaceans and their echolocation signals. For example, small near-shore and 

riverine species that hunt small prey in acoustically cluttered habitats tend to use 

higher-frequency (>100kHz), more narrow-band echolocation signals (Ketten, 
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2000). Harbor porpoises are a good example. In contrast, larger offshore 

species like sperm whales hunt larger prey in open water (a potentially less 

cluttered habitat) and use lower-frequency, broadband signals (Ketten, 2000). 

However, exceptions to this pattern exist; for example, pygmy sperm whales 

Kogia breviceps, which forage in deeper waters for squid, also produce 

narrowband echolocation signals centered at about 130 kHz (Madsen etal., 

2005). 

The center frequency of porpoise clicks, 130 kHz (Au etal., 1999), is 

much higher than that of sperm whale clicks, 15 kHz (Madsen et al., 2002a). 

Sperm whale clicks also have higher levels than those of porpoises (235 dB re 1 

uPa root-mean-squared (Mohl era/., 2003) vs 179 dB re 1 uPa root-mean- 

squared (Villadsgaard et al., 2007)). These differences may be explained simply 

by the much larger size of the sperm whale. Vocalization frequencies of 

terrestrial animals generally scale with body size; hypotheses to explain this 

phenomenon range from anatomical (larger sound generators and/or vocal tracts 

produce lower frequency sound) to evolutionary (lower-frequency calls allow 

larger communication distances, and larger animals with larger ranges must 

communicate over longer ranges, so evolutionary optimization of call frequency 

leads to lower-frequency calls by larger animals) (Fletcher, 2004). These same 

patterns seem to hold for whale tonal calls: recent taxon-specific work on 

cetacean tonal sounds has shown that the minimum and center frequencies of 

calls increase with decreasing body size, even when expected similarity in call 

frequency due to common ancestry is taken into account (May-Collado et al., 

2007b). In addition, for relatively solitary cetacean species with smaller social 

groups, minimum tonal call frequency is lower and call duration is higher (May- 

Collado et al., 2007a). Both features could be adaptive for longer-range social 

communication (May-Collado era/., 2007a). Thus, it seems likely that the 

arguments presented above to explain scaling of acoustic frequency with 

terrestrial animal size may also apply to cetacean tonal sounds. Similar 
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arguments probably also apply to toothed whale echolocation clicks, since the 

size of whale sound generators also scales roughly with body size, and since 

larger species tend to forage at greater depth and over larger areas. 

Another hypothesis to explain the observed relationship between whale 

body size and echolocation click frequency relates to click directionality. 

Echolocation clicks are directional (e.g., Au, 1993; Au era/., 1999; Zimmeref a/., 

2005b), and sound reflection and refraction caused by features of head and 

melon anatomy is thought to play a key role in producing this directionality (Au, 

1993; Zimmer et al., 2005b; Cranford et al., 2008). Such effects cannot occur 

unless the wavelength of sound produced is significantly smaller than the size 

scale of the anatomical features, so very small whales would not be able to 

produce low-frequency directional clicks. 

It has also been suggested that squid, a major prey item of sperm whales, 

have very low acoustic target strength and thus sperm whale clicks must have 

very high levels to ensure that prey are detectable at reasonable ranges (Madsen 

et al., 2002b). As an alternate explanation for the very high source levels of 

sperm whale clicks, researchers have hypothesized that the clicks stun or 

acoustically debilitate prey, making them easier to catch (Norris and Mohl, 1983). 

However, recent work has shown that at least one squid species, Loligo pealeii, 

shows no discemable reaction to simulated sperm whale clicks (Wilson et al., 

2007). 

The harbor porpoise's use of higher-frequency, lower-level calls may also 

be adaptive for the niche it occupies. Relatively few marine predators are 

thought to hear well at the high frequencies used by porpoises, and high 

frequency sound is rapidly attenuated in the ocean, so even animals that can 

detect it are unlikely to do so at long ranges. High frequency clicks are thus 

relatively unlikely to attract predators, which could be an advantage for the small, 

rather solitary harbor porpoise. The low levels and high frequency of porpoise 
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clicks greatly limit the ranges at which they may detect targets compared to other 

toothed whales (Au et a/., 2007). This limited detection range may not be a 

disadvantage for porpoises. First, the extent of the surrounding area that is 

behaviorally relevant to a porpoise may be proportional to their own relatively 

small size. In addition, their foraging habitat is likely to include numerous clutter 

targets including strong reflectors like the sea surface and sea floor (not only 

sediments, but also rocks and other features); minimizing echoes from such 

targets may facilitate detection of desirable targets. Finally, considering 

echolocation for navigation rather than foraging purposes, navigational 

landmarks are probably relatively dense in the coastal habitats used by 

porpoises, so shorter-range echolocation may be adequate for accurate 

navigation. 

Porpoise clicks are longer and more narrowband3 than those of other 

odontocetes, making their signal characteristics more analogous to those of CF 

bats, which employ Doppler compensation of outgoing signals (Simmons, 1974). 

In addition, anatomical study of the porpoise inner ear (cochlea) provides some 

evidence for an acoustic fovea at around 110 kHz in the porpoise auditory 

system, meaning porpoises have increased sensitivity and more acute frequency 

discrimination in the frequency range of their biosonar clicks (and prey echoes) 

(Ketten, 2000; Popov et al., 2006). A similar anatomical adaptation exists in CF- 

FM Doppler bats (Rhinolophus spp. and Pteronotus parnellii) (Vater, 2004). 

3 The -3dB bandwidth of a porpoise click is about 15 kHz (Au et al. 1999, Villadsgaard et al. 
2007). In absolute terms, this bandwidth is not dramatically different from the -3dB bandwidth of 
a sperm whale click (10-15 kHz, Madsen et al. 2002). However, the center frequency of a 
porpoise click is about 130 kHz (Au et al. 1999), while that of a sperm whale is only 8-25 kHz 
(Madsen et al. 2002); the porpoise click bandwidth is much narrower when considered as a 
proportion of click center frequency. In other words, the porpoise click has a higher Q value, 
where Q = center frequency/bandwidth. For comparison, a bottlenose dolphin click has -3 dB 
bandwidth - 40 kHz and center frequency - 115 kHz (Au 1993). 
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Given those similarities and porpoises' observed capacity for detecting 

very small frequency differences, it has been hypothesized that porpoises too 

may use some form of Doppler processing (Bibikov, 2004). However, given the 

typical swimming speeds of porpoises and their prey and the speed of sound in 

water, porpoises would have to detect very small frequency shifts (on the order of 

a few hundred Hz) to take advantage of the Doppler effect. A simple calculation 

based on swimming speeds and porpoise frequency discrimination capabilities 

suggests that they may (just barely) be able to do so (see Appendix C for 

calculations), but strong evidence against the porpoise-Doppler hypothesis also 

exists. First, Doppler-sensitive bats adjust the frequency of their outgoing clicks 

to maintain constant frequency spectra in returning echoes. If porpoises did the 

same, they would have to precisely control the center frequencies of their 

outgoing clicks to within a few hundred Hz. It seems unlikely that they do so, 

given the wide scatter (10-20 kHz) observed in center frequencies of clicks 

produced by individual porpoises (Au et al., 1999); in fact, the available data 

suggest that they do not have such fine control over the frequency content of 

their clicks. Second, porpoise clicks (-150 usec (Au et al., 1999)) are much 

shorter than the cries of Doppler bats (e.g. Rhinolophus spp., -50 msec (Jones 

and Rayner, 1989)), which limits frequency resolution during processing of 

returning echoes. Thorpe and colleagues (1991) carried out an ambiguity- 

diagram-based analysis of clicks produced by Hector's dolphin 

{Cephalorhynchus hectori), which are similar in duration and frequency spectrum 

to those of porpoises. They concluded that the clicks were poorly suited to 

Doppler range discrimination, and could not resolve changes in relative target 

velocity of less than 20 m/sec (much larger than the expected relative velocity of 

dolphin or porpoise prey). However, it should be noted that their estimate of 

dolphin range discrimination ability depends on the assumption that dolphins use 

matched-filter-like processing on echolocation target echoes. 
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Harbor porpoises inhabit temperate and subarctic waters and use 

echolocation for foraging and navigation. They tend to forage in shallow, coastal 

waters (less than a few hundred meters deep) (Westgate et al., 1995; Reynolds 

and Rommel, 1999), and they consume some species offish that tend to be 

found at or near the sea floor (Fontaine et al., 1994; Santos et al., 2004). 

Consequently, their foraging environment is highly cluttered, and sensitivity to 

Doppler shifts in returning echoes or Doppler compensation like that of CF- 

Doppler bats could help porpoises more easily detect moving prey against a 

background of stationary clutter. One way to test the Doppler compensation 

hypothesis would involve collection of data on the frequency of outgoing clicks 

and echoes during a prey capture task, during which velocity of the porpoise 

relative to the prey was also monitored. It may be possible to begin to address 

this question using data from the prey capture experiments (with higher-gain tag) 

described earlier in this chapter. However, off-axis tag audio recordings are not 

ideal for determination of outgoing click frequencies, and audio sampling rates 

higher than 400 kHz would also aid processing, so further experiments would be 

required to explore the question fully. 
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Appendix A: A Rotation Test for Behavioural Point Process Data 

The following manuscript (full citation below) has been accepted for publication in 

Animal Behaviour and is reprinted with permission from the publishers. 

DeRuiter, S. L, and Solow, A. (in press). "A rotation test for behavioural point- 

process data," Animal Behaviour. 
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A common problem in animal behavior is determining whether the rate at which a 

certain behavioural event occurs is affected by an environmental or other factor. 

In the example considered later in this paper, the event is a vocalization by an 

individual sperm whale and the factor is the operation or non-operation of an 

underwater sound source. A typical experiment to test for such effects involves 

observing animals during control and treatment periods and recording the times 

of the events that occur in each. In statistical terminology, the data arising from 

such an experiment - the times at which events of a specified type occur - 

represent a point process (Cox & Lewis 1978). Events in a point process are 

treated as having no duration. Although this is not strictly correct for behavioural 

events, the approximation is reasonable when the duration of events is small in 

relation to the interval between them. 

In some cases, under the null hypothesis of no treatment effect, 

behavioural events can be assumed to follow a stationary Poisson process. 

Under this model, the intervals between successive events are independent and, 

conditional on their number, the events are uniformly distributed over the 

observation period. As described below, when the Poisson assumption is valid, 

a statistical test to determine whether event rate changes under treatment can be 

based on the binomial distribution. In many cases, however, the Poisson model 

has been shown to be invalid for behavioural events. This is the case, for 

example, when events occur in bouts (Slater & Lester 1982; Sibly et al. 1990; 

Haccou & Meelis 1992). As illustrated below, when behavioural events do not 

follow a Poisson process, the binomial test can give misleading results. A 

number of methods are available to test whether a point process is Poisson 

based on the uniformity result mentioned above (Stephens 1986). If a point 

process cannot be assumed to be Poisson, one option is to use a test that is 

valid under a particular alternative to the Poisson model. Unfortunately, while it 

is often easy to show that a point process is not Poisson, it can be difficult to 

specify an appropriate alternative model. The purpose of this paper is to 
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describe and illustrate the use of a simple nonparametric method that can be 

used to analyze behavioural point process data even if the process generating 

the data is unknown. 

A Rotation Test 

Suppose that events are observed over the period (0, 7), and that the total times 

under control and treatment conditions are Tc and TT, respectively (with 

T = Tc + TT). Assume that, under control conditions, events follow a stationary 

Poisson process with rate Xc and that, under treatment conditions, events follow 

an independent Poisson process with rate AT.  Under this model, interest centers 

on testing the null hypothesis H0 :AC = X, of no treatment effect. Let the random 

variables Nc and Nr be the numbers of events occurring under control and 

treatment conditions, respectively, and let N = Nc +NT be the total number of 

events. Conditional on the observed value n of A/, underH0, Nc has a binomial 

distribution with n trials and success probability TcIT. The null hypothesis can 

be rejected at significance level a if the observed value of Nc is below the lower 

(a/2) quantile or above the upper (a/2) quantile of this binomial distribution. 

Provided n is not too small and Tc IT is not too close to 0 or 1, the binomial 

distribution can be approximated by a normal distribution with mean nTcIT and 

variance n Tc T, IT2, so that Hg can be rejected at approximate significance 

level a if: 

237 



TNc    nTc >(| 

where 0"'(a/2) is the upper (a/2) quantile of the standard normal distribution. 

Behavioral events often exhibit clustering in time beyond what is expected 

under a Poisson process. As illustrated below, the binomial test may fail in such 

cases because the underlying randomization scheme - distributing n events at 

random over the observation period - fails to capture internal structure in the 

events that is present even under the null hypothesis. A randomization 

procedure that does preserve this internal structure can be visualized in the 

following way. Transform the observation period into a circle by joining its end to 

its beginning. This is sometimes referred to as imposing a periodic boundary 

condition. Keeping the partition of the observation period into control and 

treatment segments fixed, displace the events by the same random rotation. Let 

t, be the time of they'th event. Its time under this rotation scheme is given by: 

t   =t   +U t   +U <T 
(2) 

tj+U-T       tj+U>T 

where U is a uniform random variate over the interval (0, 7). By displacing each 

event by the same random angle, this procedure preserves the internal structure 

of the events except at the beginning of the original observation period, where 

events originally near Tare now in proximity to events originally near 0   Provided 
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n is not too small, the effect of this concatenation is negligible. The test proceeds 

by approximating the distribution of Nc under the null hypothesis from values 

produced by a large number of random rotations. The null hypothesis is then 

rejected at significance level a if the observed value of Ar
r lies below the lower 

or above the upper a/2 quantile of this distribution. This general approach was 

originally proposed by Harkness & Isham (1983) for testing association between 

two two-dimensional point processes observed on a rectangle. The test has 

been applied by Miller et al (2004a, b), but a detailed description of the test 

including assessment of its validity and power has not previously been published. 

To summarize, the steps involved in the rotation test are: 

1. Express the data as a set of behavioral event times over the observation 

period (0, T). 

2. Calculate the number A/c of events occurring during the control period. 

3. Generate a rotated set of behavioural event times according to (6). 

4. Calculate the number Nc_rot, of events in the rotated set falling in the 

original control time period. 

5. Repeat steps 3-5 many times to obtain a distribution for Nc_rot and assess 

significance by comparing the the observed value of Nc to the quantiles 

of this distribution. 

Test Performance 

239 



In this section, we assess the performance of the binomial and rotation tests 

under three point process models: the stationary Poisson process, the one- 

dimensional Thomas process (Thomas 1949), and an exponential autoregressive 

(EAR) model (Lawrance & Lewis 1979). The Thomas process is a classical 

model of clustering in point process data, while the EAR model gives rise to 

clustering through positive autocorrelation in the intervals between events. No 

claim is made that either of these models is necessarily appropriate for a 

particular behavioural point process. Instead, they are used here as plausible 

alternatives to the Poisson process. 

In a Thomas process, initiating events follow a stationary Poisson process 

with rate //. Each initiating event gives rise to an additional number of offspring 

events. The numbers of these offspring are independent Poisson random 

variables with mean 0. Let s0 be the time of an initiating event and suppose that 

it gives rise to k offspring. The times of these offspring are given by s t = s0 + r>';, j 

= 1,2, ...,/c, where Sl,82,...,6k are independent random intervals with common 

distribution function F. The process consists of the union of the initiating events 

and their offspring. The Thomas process is stationary with overall rate //(l + 0). 

However, it is over-dispersed in relation to the Poisson process with the same 

rate. For example, for the Thomas process, the variance of the number of events 

occurring in a unit interval is /.i(\ + 30 + 01) instead of //(l +6) for the Poisson 

process with the same overall rate. 

In contrast to the Thomas process, which is a model of the event times, 

the EAR process is a model for the intervals between events. Let J, = /; -tt , be 

the interval between events j- 1 andy. Under the Poisson model, the intervals 
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c/,,c/,,...are independent exponential random variables. In contrast, under the 

EAR model, the sequence of intervals follows the autoregressive process: 

dj=pdj_l+ej (3) 

where  e   is equal to 0 with probability p and equal to an exponential random 

variable with mean MX with probability 1 - p. The EAR process is stationary with 

overall rate X and autocorrelation function Corr{dj,dj h) = p . The positive 

dependence between successive intervals gives rise to clustering of events. 

Although it is possible to make some progress analytically, for the purpose 

of this paper we present some results from a small simulation study. The goal of 

the first part of this study was to assess the validity of the nominal significance 

levels of the binomial and rotation tests under the three point process models 

outlined above. This involved repeatedly simulating point process data from 

these models under the null hypothesis and applying both tests at the nominal 

0.05 significance level. For a valid test, the null hypothesis should be rejected at 

a rate equal to the nominal significance level. In the study described here, the 

observation period was taken to be the unit interval, with the first half 

corresponding to the control period and the second half to the treatment period. 

Results are presented in Table 1 for overall mean rates of 500 and 1000. For the 

Thomas process, the parameter 0 was fixed at 1 while for the EAR process the 

parameter p was fixed at 0.5. Each entry in Table 1 was based on 1000 

simulated data sets and each rotation test was based on 1000 random rotations. 

In the case of the Thomas process, we assumed that offspring events fell into the 
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same sub-period as their initiating event. In practical terms, this amounts to the 

assumption that the displacements between offspring and initiating events are 

negligible in relation to the length of the periods of control and treatment 

conditions. 

Turning to Table 1, it is clear that the binomial test is invalid for point 

process data generated by the Thomas and EAR processes. For these models, 

the estimated true rate at which the null hypothesis is falsely rejected is well 

above the nominal significance level. In contrast, the estimated true significance 

level for the rotation test is not significantly different from the nominal level for all 

three point process models. 

The goal of the second part of the simulation study was to assess the 

power of the rotation test.  Power is defined as the probability of rejecting the null 

hypothesis when the alternative hypothesis is correct. This probability will 

depend on the nature and magnitude of the departure from the null hypothesis, 

as well as on the amount of data. As a rough guide, a test has good power if this 

probability is at least 0.8. The power study was based on the same general 

simulation procedure outlined above except that, for each of the point process 

models, the overall rate under treatment conditions was increased by a 

multiplicative factor f over its value under control. For the Thomas process, this 

was accomplished by increasing the rate // of initiating events. As before, let Xc 

and AT be the rates under control and treatment conditions, respectively. For the 

case here where the observation period is evenly divided between control and 

treatment, the overall rate A is simply the average of kc and AT. Throughout 
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this power study, this overall rate was held fixed by taking Xc = 2Z/{[+/) and 

The results of the power study are shown in Table 2. Results are 

presented for overall rates 500 and 1000 with the parameter 0 of the Thomas 

process fixed at 1, the parameter p of the EAR process fixed at 0.5, and f = 1.5, 

2, and 3.  . As before, each entry in this table was based on 1000 simulated data 

sets and for each data set the rotation test was based on 1000 random rotations. 

For the Poisson case, results are presented for both the binomial test and the 

rotation test. In this case, the rotation test is less powerful than the binomial test, 

although it achieves good power in most of the cases considered here. As the 

binomial test is not valid for the Thomas and EAR processes, for these 

processes results are presented only for the rotation test. The power of the 

rotation test is quite similar for the two cluster processes. In general, the rotation 

test achieves good power provided the magnitude of the treatment effect and the 

overall rate of events are not too small. 

In addition to the results presented in Table 2, we determined by 

simulation the minimum detectable effect size /min - defined as the value of f for 

which the test at 0.05 significance level achieves a power of 0.8 - for the cases 

considered in Table 2.   Results are presented in Table 3. In overall terms, the 

rotation test has good power once f reaches approximately 2. 

An Application to Sperm Whale Response to Airgun Sounds 
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In this section, we apply the rotation test to some experimental data involving the 

exposure of a sperm whale to airgun sounds. Airguns are a source of loud, 

impulsive low-frequency underwater sound. They are generally deployed in 

towed arrays for geophysical exploration (Richardson et al. 1995). Airgun arrays 

have very high source levels (Richardson et al. 1995; Caldwell & Dragoset 2000) 

and there is a concern that exposing sperm whales and other marine mammals 

to airgun noise may have adverse impacts on their behavior (Gordon et al. 2003). 

As sperm whales use echolation to locate prey, one hypothesized 

behavioral impact of airgun sound is a reduction in whale foraging rate.    Sperm 

whales produce regular echolocation clicks almost continuously while foraging, 

interrupted only by short pauses and buzzes (short series of rapid echolocation 

clicks indicative of attempted prey capture (Whitehead 2003, Miller et al. 2004a)). 

Whales begin producing echolocation clicks during the descent phase of deep 

dives, stop clicking during or just prior to ascent, and do not generally produce 

series of regular echolocation clicks while at the surface or during shallow dives 

(Watwood et al. 2006). We therefore defined foraging periods as the portions of 

deep dives between the start and end of regular echolocation clicks. The 

behavioral event of interest was the production of echolocation buzzes, which 

serve as a proxy for foraging rate 

The data used here were collected during controlled exposure 

experiments conducted on the 2002 and 2003 Sperm Whale Seismic Study 

cruises. During the experiments, dtags (Johnson & Tyack 2003) were attached to 

individual whales to record sound and movement data during control conditions 

(no airgun sound exposure) and treatment conditions (airgun sound exposure). 
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Airguns were fired every 15 seconds during the treatment period. Detailed 

information on these experiments can be found in Jochens & Biggs (2003, 2004) 

and Madsen et al. (2006). Here, we present data from a single individual. 

The behavioural record is shown in Figure 1. For this whale, the total time 

spent foraging during the observation period was 7= 5.89 hours, of which 

Tc =4.74 hours was under control conditions (the airgun array was not operating) 

and TT =1.15 hours was under treatment conditions (the airgun array was in 

operation). A total of n = 153 echolocation buzzes were recorded, of which 

Nc = 139 occurred during control conditions and NT = 14 occurred during 

treatment conditions. The empirical rate of events during control conditions was 

29.3 events h"1 and the corresponding rate during treatment conditions was only 

12.2 events h"1. The value of the binomial test statistic in (1) is 3.43, which is 

significant at approximately the 0.0006 level. 

For reasons connected to the spatial distribution of prey and whale 

foraging behavior, we expect that the Poisson model underlying the binomial test 

is unlikely to apply to this time-series of sperm whale foraging events. This 

expectation was confirmed by an analysis of the intervals between events, which 

revealed positive autocorrelation at short lags. As the intervals in a Poisson 

process are independent, this is evidence of non-Poisson behaviour in this point 

process. We therefore applied the rotation test to these data. The histogram of 

values of Nc based on 10,000 rotations is shown in Figure 2. Of these, 647 

exceeded the observed value of 139 for an estimated two-sided significance level 

of approximately 0.13. In contrast to the binomial test, by conventional 

standards, the null hypothesis cannot be rejected by the rotation test. It is not 

possible to calculate a priori power estimates for the sperm whale data set, since 
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we do not know the true process generating the buzz time series data, and thus 

we can not produce the simulated data needed for power estimation. 

Discussion 

The rotation test is a general nonparametric approach that can be used when 

data exhibit serial dependence. The purpose of this paper has been to describe, 

evaluate, and illustrate this test in the specific context of testing for a treatment 

effect on the rate of a behavioural point process. We have shown that, in this 

context, the rotation test works well, maintaining the nominal significance level 

while providing high power when the data do not follow a Poisson process.  In 

contrast, the binomial test is invalid in this case. 

A common approach to analyzing behavioural point processes is to 

reduce the data to empirical rates within time bins (e.g, Cherry 1989; Mooring 

1995; Paredes et al. 2005; Fernandez-Juricic & Tran 2007). As a general 

proposition, binning point process data entails a loss of power (Dean & Balshaw 

1997) and is not recommended. Moreover, the analysis of binned data is also 

affected by non-Poisson behaviour in the underlying point process. Briefly, if the 

underlying point process is Poisson, then the counts within bins will have Poisson 

distributions. Statistical methods for analyzing Poisson count data are reviewed 

in McCullagh & Nelder (1989). However, if the underlying point process is not 

Poisson, then the distribution of bin counts is also not Poisson and the results of 

these methods can be misleading (Paul & Banerjee 1998). A common 

alternative to the Poisson distribution for count data is the negative binomial 

distribution. Parametric methods for analyzing negative binomial data are 
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available (e.g., Barnwal & Paul 1988; Paul & Banerjee 1998). The rotation test 

provides a nonparametric alternative. 

Turning to the results of the previous section, it is clear that no general 

conclusion about the effect of airgun noise on sperm whales can be drawn from 

the results of a single test. It is also worth pointing out that the hypothesized 

effect of airgun nose is a reduction in foraging. Had a one-sided test for such a 

reduction been performed, the significance level would have been around 0.065 

which, in light of power considerations, is certainly suggestive of an effect. 

Finally, although this paper has focused on the rotation test in the context 

of analyzing behavioural point process data, the same general method could be 

used in other situations. For example, Shapiro (2008) used a rotation test to 

determine whether the frequencies of different types of vocalizations in killer 

whales differed between behavioural states. In this case, the approach was used 

to account for serial dependence in vocalization type. 
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Tables 

Table 1. Validity of the binomial and rotation tests 

overall mean rate 

500 1000 

Poisson 

binomial 0.05 0.05 

rotation 0.042 0.054 

Thomas 

binomial 0.221 0.233 

rotation 0.045 0.049 

EAR 

binomial 0.247 0.251 

rotation 0.052 0.052 

The rate at which the null hypothesis of no treatment effect was falsely rejected 

in testing at the 0.05 significance level using the binomial test and the rotation 

test for data simulated from the Poisson, Thomas, and EAR models with overall 

mean rates of 500 and 1000. For the Thomas model, 9 = 1 and for the EAR 

model p = 0.5. Results are based on 1000 simulations except for the binomial 

test under the Poisson model where the theoretical result is given. 

253 



Table 2. Power of the rotation test 

overall mean rate 

Poisson 

binomial 

rotation 

500 

f 

1.5 2        3 

1 1         1 

0.61 0.90   0.99 

1000 

f 

1.5        2 / 

1         1 1 

082     0.98 1 

Thomas 

rotation 0.34    0.63   0.88 0.56    0.86   0.97 

EAR 

rotation 0.37    0.64   0.86 0.54    0.83   0.98 

The power of the rotation test at the 0.05 significance level for data simulated 

under the Poisson, Thomas, and EAR models when the mean rate under 

treatment is a factor f greater than that under control and when the overall mean 

rate is fixed at 500 and 1000. For the Thomas model, we always used 9 = 1; for 

the EAR model we always used p = 0.5.    For the Poisson model, results are 

also given for the binomial test. Results are based on 1000 simulations. 
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Table 3. Minimum detectable effect levels. 

overall mean rate 

500 1000 

Poisson 

binomial 1.3 1.2 

rotation 1.7 1.5 

Thomas 

rotation 2.5 1.8 

EAR 

rotation 2.7 2.0 

The minimum detectable effect size /mm - defined as the value of /Tor which the 

test at 0.05 significance level achieves a power of 0.8 - for the cases considered 

in Table 2. Results are based on 1000 simulations. 
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Figure Legends 

Figure 1. Top panel: Dive profile of the tagged sperm whale. The grey line 

indicates whale depth, and black circles indicate the times of echolocation 

buzzes. Airgun exposure periods are shaded gray. Black lines connecting the 

top and bottom panels illustrate how dive ascents, descents and surface periods 

were cut from the dataset to produce the buzz time-series we analyzed. Only 

foraging periods (indicated by yellow shading) were included in the buzz time- 

series. Bottom Panel: Time-series of echolocation buzzes produced by the 

sperm whale during foraging periods. Black dots indicate the times of buzzes, 

and gray shaded areas indicate airgun exposure periods. 

Figure 2. Histogram of values for Nc, the number of creaks during the control 

period, obtained in 10,000 rotations of the sperm whale dataset. (The value of 

Nc was 139 for the original, non-rotated dataset.) 
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Appendix B: Matlab Code 

Matlab Code Used in Chapter 2 (Porpoise Prey Capture Analysis) 

Click Extraction and Measurement of Click Properties 

%clickanaljune10b.m 

%Data analysis script for analyzing the time surrounding prey capture 

%events from F&B Jan 2008 dataset. Extracts clicks, measures click 

%parameters (level, frequency characteristics, duration, etc.), and %saves data 

as matlab data matrices. 

% 

%Stacy DeRuiter, June 2008 

0/ ****************************************************** 

%PRELIMINARIES 
0/***************************************+***********************+****** 
/o 

%set the paths for tag tools (tag data and audio data file locations) 

settagpath('audio','E:\TagData', 'prh', 'C:\dtag\metadata\prh',... 'audit', 

'C:\dtag\metadata\audit', 'raw', 'C:\dtag\metadata\raw',... 

'cal', 'C:\dtag\metadata\cals'); 

%if CHECKING = 0 then the program just runs for all trials, if CHECKING 

%is not zero then you will have to inspect all click detection output 

%in figures, then close the figures to approve them and continue analysis. 

CHECKING = 0; 

%load timing data 

%load data matrix - includes times of prey capture events 

load capturetimedata 
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%load data vector - indicates which of the 71 trials had successful 

%prey captures 

load capture_indices 

dur = 30; %duration in seconds of clip to extract (half before and half 

%after the capture event) 

thr = 3e-04; %click detection threshold (wavfile level of the envelope 

%of the signal) 

blank = 0.0013; %blanking time between clicks (time after a click 

%during which no subsequent clicks can be detected) 

%(peak-peak sensitivity of the tag is 197dB re 1uPa) 

cal = 191; %PEAK (not PP) sensitivity of tag in dB re 1 wavfile-unit per uPa 

0/ ************************************************************* 
/O 

%TAG DATA ANALYSIS, CLICK DETECTION 
0/ ********************************************************************* 
/o 

%Repeat the following procedure each prey capture trial, 

for k = 1 :length(capture_indices) 

%analyze only the 67 successful captures 

n = capture_indices(k); %n is the trial # out of 71 for the kth 

%successful capture 

clear x3 afs rcue b a x2 x S w m toad near T TT Tel TTcl 

%1. Extract audio data from dur/2 sec before and dur/2 sec after 

%prey capture event 

[x3, afs, rcue] = tagwavread(tagids(n,:),Tcapture_cst(n) 

dur/2 , dur); 

%2a. high pass filter for DC, etc. 

[b,a] = butter(6,500/(0.5*afs),'high'); %6-pole Butterworth high 

%pass filter at 500Hz 
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x2 = filtfilt(b,a,x3); %apply the filter to the signal 

%2b. band pass filter signal for plotting clicks and measuring 

%click properties 

[b,a] = butter(4,[100000/(0.5*afs) 200000/(0.5*afs)]); %4 pole 

%bandpass Butterworth filter at 100 and 200 kHz 

x = filtfilt(b,a,x2); %apply the filter to the signal 

for ch = 1:2 %repeat analysis for each channel 

clear x3 gsig y envy emax d z r p p2 p1 q tsig clickwf... 

clickwffilt toad near ee R ICIs 

disp(['prey capture trial number' num2str(n)' of'... 

num2str(length(Tcapture_cst))', channel' num2str(ch)]); 

%display on screen the trial number and channel number of the 

%data to be analyzed 

%3. Run a click detector on the data. 

%run modified peter madsen envelope click detector 

[tsig, clickwf, clickwffilt] = clickxtract_sdr10b( x2(:,ch),... 

x(:,ch), thr, blank, afs); 

tsig = tsig(:); %reshape tsig so it's the right shape for input to 

%clickxtract_sdr 

%lf CHECKING ~=0, plot the resulting detected clicks on the data 

%waveform to check click detector accuracy 

if CHECKING ~=0 

for i = 1:dur %plot detected clicks on filtered waveform. One 

%second at a time or memory will run out. 

%plot wavfile data (bandpass filtered tag data) 

V = figure(3); elf; plot((((i-1)*afs)+1:i*afs)./afs,... 

x(((i-1)*afs)+1:i*afs,ch) ,'k', 'LineWidth', 1); 

hold on; 

%plot detected clicks on same figure 
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plot(tsig, x(round(tsig*afs),ch), '^'.'MarkerSize', 10 ); 

xlim([((i-1 )*afs)+1 ,i*afs]./afs); %plot time series of data 

%with detected clicks as asterisks 

hold off; 

waitfor(V); % user must close figure to finish inspection 

%and move on to next time period 

end 

end 

%4. Measure click properties: 

%A. Level, Frequency and Duration measurements 

R = clickparams_sdr(clickwf_filt,afs, [],NaN, cal); %Mark Johnson 

%click measurement file (modified), use on filtered data set! 

%B. Inter-click interval measurements 

ICIs(:,1) = [tsig - dur/2]; %col 1 of ICIs contains the time cues 

%of clicks (in seconds from capture -- negative is before and 

%positive is after)) 

ee = diff(tsig); %calculate the ICI before each click 

ICIs(:,2) = [ee(1); ee]; %col 2 of ICIs contains the inter-click 

%interval from the preceding click to the one at t = ICIs(col 1) 

R.clickt = ICIs(:,1); %add the time cue data... 

R.ici = ICIs(:,2); %and the ICI data to the R data matrix. 

0/ ********************************************************************** 
/o 

%SAVE DATA 
0/ ********************************************************************** 
/o 

%save data 

%save click parameter data 

save(['captureB' num2str(n) 'ch' num2str(ch)], 'R'); 
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%save waveform data 

save(['waves_captureB' num2str(n) 'ch' num2str(ch)],... 

'clickwfjilt', 'clickwf); 

end 

end 

Envelope-based Click Detector 

function [tsig, clickwf, clickwffilt] = clickxtract_sdr10b( x, x filt, thr, blank, afs) 

%extract porpoise clicks from pdtag recordings. 

%from Michael Hansen (who got it from Peter Madsen), summer 2007. 

%Modified by Stacy DeRuiter. 

% 

%INPUT VARIABLES: x is the input signal (wavfile data from tagwavread) 

%x_filt is x, filtered between 100-200 kHz with a 4-pole Butterworth 

%bandpass filter 

%thr is the threshold for extracting clicks (signal level in envelope 

%of signal) afs is the audio sampling frequency for the x and x filt files. 

%blank is the blanking time between clicks (after a detected click, the 

%program will skip ahead "blank" seconds before searching for more 

%clicks) 

% 

%OUTPUT VARIABLES: tsig is a vector of the times of detected clicks (in 

%seconds since start of x) 

%clickwf, clickwffilt -- each column of clickwf or clickwffilt is a 

%clip of wavfile data containing a detected click (it is dt seconds 

%long - dt is a variable defined in the function, below) 

0/ ***************************************************** /o 

%INITIALIZE AND DEFINE VARIABLES 
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0/ -A********************************************************************* 
/o 

clear sig dt int jump N2 esig clickwf tsig 

siz=size(x_filt); % size of input file in [samples, channels] 

dt=0.001; %[seconds]   % Length of interval which is read from 

% input file each time 

int=round(dt*afs); % Length of interval in samples 

jump=round(blank*afs);% Start length of jump once a peak is 

%detected 

N1 = 1; % Starting extracting from sample 1 

N2=N1+int; % N2 is the end sample interval in the 

%desired segment. 

p=0; % the variable p keeps track of number of 

%detected clicks 

q = 1; 

lastici = 0.1; % the previous inter-click interval (this 

%is just a starting value to initialize) 

lastp = 2*thr; % the previous click's peak-of-envelope 

%value (this is just a starting value to 

%initialize) 

ptrack = [ lastp lastp lastp]; 

icitrack = [ lastici lastici lastici]; 

click = 0; % index variable for keeping track of lastp 

0/ ********************************************************************** 
/o 

%DETECT CLICKS 
0/********************************************************************* 
/o 

while N2 < siz(1) % Go on until end of file is reached 
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clear sig esig stime 

sig=x_filt(N1:N2);      % Read a sound file segment 

esig=sqrt(sig.A2+imag(hilbert(sig)).A2); % Generate envelope 

ip=find(esig==max(esig));% Find sample value for peak of envelope 

thisici = ((N1+ip)/afs)-(click(q)/afs); %calculate the inter-click 

%interval before this click 

if esig(ip)>thr && (esig(ip)>=lastp/2 && thisici >= lastici/5) 

%if click is above thresh, and at least 20% as loud as the last 

%one, and the new ici is not less than 1/5 of the previous 

%one... 

p=p+1; % Click is detected 

q = p; % index variable for keeping track of lastp 

stime = max([1,round((N1+ip)/afs*afs)-round((dt/2)*afs)]); 

%start time of click is dt/2 seconds before the time at which 

%max envelope level is attained, or the first sample in the 

%clip if max-dt/2 is before the start of the clip 

clickwf(1:length(x(stime:min(length(x),... 

stime+round(dt*afs)))),p)=x(stime:min(length(x),... 

stime+round(dt*afs))); 

%extract a clip from x and place it in column p of clickwf 

clickwf_filt(1:length(x_filt(stime:min(length(x),... 

stime+round(dt*afs)))),p) = x_filt(stime:min(length(x),... 

stime+round(dt*afs))); 

%extract a clip from x and place it in column p of clickwf filt 

click(p)=N1 +ip; %keep track of the time (in samples) of the 

%detected click in the variable "click" 

tsig(:,p)=(click(p)/afs); %keep track of the time (in seconds) 

%of the detected click in the 

% variable "tsig" 
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N1=N1+ip+jump; %increment N1 to give the start time to begin 

%looking for the next click 

if esig(ip) < 3*mean(ptrack)%change lastp to the current click 

%value, unless this is a suddely really loud click >3x 

%louder than the last 

ptrack = [ptrack(2:3),esig(ip)]; %redefine ptrack so it 

%contains the last 3 click levels 

lastp = mean(ptrack); %calculate lastp (mean of level of 

%last 3 clicks), 

end 

if p > 1 && thisici < 0.1 %as long as the current click's ici 

%is lesss than 100msec, 

icitrack = [icitrack(2:3), thisici];%add it to icitrack. 

lastici = mean(icitrack); %calculate lastici (mean of ici 

%of last 3 clicks), 

end 

elseif esig(ip)>thr && thisici > 2*lastici %also keep quiet clicks 

%after pauses/that are not echoes/reflections 

p=p+1; % Click is detected 

q = p; % index variable for keeping track of lastp 

stime = max([1,round((N1+ip)/afs*afs)-round((dt/2)*afs)]); 

%start time of click is dt/2 seconds before the time at which 

%max envelope level is attained, or the first sample in the 

%clip if max-dt/2 is before the start of the clip 

clickwf(1:length(x(stime:min(length(x),... 

stime+round(dt*afs)))),p)=x(stime:min(length(x),... 

stime+round(dt*afs))); 

%extract a clip from x and place it in column p of clickwf 

clickwf_filt(1:length(x_filt(stime:min(length(x),... 
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stime+round(dt*afs)))),p) = x_filt(stime:min(length(x),... 

stime+round(dt*afs))); 

%extract a clip from x and place it in column p of clickwMilt 

click(p)=N1 +ip; %keep track of the time (in samples) of the 

%detected click in the variable "click" 

tsig(:,p)=(click(p)/afs); %keep track of the time (in seconds) 

%of the detected click in the variable "tsig" 

N1=N1+ip+jump; %increment N1 to give the start time to begin 

%looking for the next click 

ptrack = [esig(ip),esig(ip),esig(ip)];   %change lastp and 

%ptrack to the current click value, 

%so that subsequent quiet clicks will be detected 

lastp = mean(ptrack); 

icitrack = [0.1 0.1 0.1]; %reset icitrack and lastici to 

%default values, since a long pause has occurred 

lastici = 0.1; 

elseif esig(ip)>thr && (esig(ip)>=2*lastp && thisici < lastici/5) 

%also keep clicks that are more than 2 times louder 

%than the previous click, even if the ICI is short. 

%this helps correct the program if it begins to detect surface 

%reflections rather than "main" outgoing clicks. 

p=p+1; % Click is detected 

q = p; % index variable for keeping track of lastp 

stime = max([1,round((N1+ip)/afs*afs)-round((dt/2)*afs)]); 

%start time of click is dt/2 seconds before the time at which 

%max envelope level is attained, or the first sample in the 

%clip if max-dt/2 is before the start of the clip 

clickwf(1:length(x(stime:min(length(x),... 

stime+round(dt*afs)))),p)=x(stime:min(length(x),... 
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stime+round(dt*afs))); 

%extract a clip from x and place it in column p of clickwf 

clickwf_filt(1:length(x_filt(stime:min(length(x),... 

stime+round(dt*afs)))),p) = x_filt(stime:min(length(x),... 

stime+round(dt*afs))); 

%extract a clip from x and place it in column p of clickwffilt 

%click(p)=N1+ip; keep track of the time (in samples) of the 

%detected click in the variable "click" 

tsig(:,p)=(click(p)/afs); %keep track of the time (in seconds) 

%of the detected click in the variable "tsig" 

N1=N1+ip+jump; %increment N1 to give the start time to begin 

%looking for the next click 

if esig(ip) < 3*mean(ptrack)%change lastp to the current click 

%value, unless this is a suddely really loud click >3x 

%louder than the last 

ptrack = [ptrack(2:3),esig(ip)]; 

lastp = mean(ptrack); 

end 

%do not change lastici or icitrack in this case, 

else 

N1=N1+int; %if no click was detected, increment N1 to set the 

%start time of the next segment of the wavfile to search, 

end 

N2=N1+int; %set the end time of the next segment of the wavfile to 

%search. 

end 

Matlab Code Used in Chapter 3 (Transmission Loss in Porpoise Habitats) 

Click Extraction from Data Wavefiles 
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function clickxtract_sdr(thr) 

%Script to extract click times and click waveform wavefile data from 

%porpoise transmission loss recordings (in Denmark or Grand Manan). 

%from Michael Hansen (who got it from Peter Madsen), summer 2007. 

%Modified by Stacy DeRuiter, 2007-2008 

%lnput variable thr is the threshold (envelope level in wavfile) for click detection 

0/ ****************************************************** 
/O 

%INITIALIZE AND DEFINE VARIABLES 
0/ ********************************************************************* 
/o 

clear file sigl fs nbits dt int jump N2 sig esig gsig 

%before running this script, open data wav file in Adobe audition. 

%Filter it with a 4-pole bandpass Butterworth filter between 100-166 kHz. 

%ln Audition, select and copy a segment of the file in which to detect clicks. 

file = 'c:\Temp\CoolClipboard.wav'; % Path to input file from Adobe Audition 

fid1=fopen(file); 

[sigl fs nbits]=wavread(file); % read input file 

% (optional) save the data file as a wavfile, so you know what you 

% analyzed 

% wavwrite(sig1,fs,16,'c:/porpoisetldata/test.wav') 

siz=wavread(file,'size')   % Read size of input file 

dt=0.001; %[seconds]       % Length of interval which is read from 

% input file each time 

int=dt*fs; % Length of interval in samples 

jump=round(0.009*fs);      % length of jump once a peak is detected 

N1 = 1; % Start sample number of the wavfile segment 

% to be analyzed 
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N2=N 1 +int; % N2 is the end sample number of the wavfile 

% segment to be analyzed. 

p=0; % Keeps tracks of number of detected clicks 

0/ ********************************************************************** 
/o 

%DETECT CLICKS 
0/ ********************************************************************** 
/o 

while N2 < siz(1), % Go on until end of file is reached 

% Read a sound file segment 

[sig,fs,nbits]=wavread(,c:/porpoisetldata/test.wav',[N1 N2]); 

% Generate signal envelope 

esig=sqrt(sig.A2+imag(hilbert(sig)).A2); 

% Find sample value for peak of envelope 

ip=find(esig==max(esig)); 

if esig(ip)>thr,% If envelope level in the segment being 

%analyzed is > thr, 

p=p+1 % Click is detected 

stime = max([1,N1+ip-round(0.0005*fs)]); 

%stime is the start time for extracting click data, in samples. 

%stime is 0.5 msec before the time at which envelope level 

%peaks 

gsig(:,p)=wavread(file,[ stime stime+round(0.0015*fs)]); %each 

%column of gsig is a 1.5-msec-long segment of wavfile data for 

%the detected click 

click(p)=N1+ip; %click is the time, in samples, at which 

%envelope level peaks (the click time) 

tsig(:,p)=(click(p)/fs); %sig is the click time in seconds 

%since start of file 
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N1=N1+ip+jump; %increment N1 (file segment start time) to 

%examine the next wavfile segment 

else %if no click was detected 

N1=N1+int; %increment N1 (file segment start time) to examine 

%the next wavfile segment 

end 

N2=N1+int;%increment N2 (file segment end time) to examine the next 

%wavfile segment 

end 

plot(gsig) %plot detected click waveforms to check accuracy of click 

%detection 

0/ ************************************************* 
/o 

%SAVE DATA 
0/ ************************************** + *************** + *** + ********** 
/o 

% save the detected click waveform data for level analysis by 

% TLauto_sdr script 

save 'c:\porpoisetldata\click1\ gsig; 

st = fclose('aH') %close all files used 

Click Level Determination (Grand Manan Datasets) 

function TLauto_sdr(location, rr, zr) 

%Analysis tool to determine peak-peak, RMS, and energy levels of clicks 

%detected by clickxtract_sdr script. For Grand Manan porpoise 

%transmission loss datasets. 

%Written by Peter Madsen, 27 Dec. 2006 

%Modified by Stacy DeRuiter, July 2007, Jan 2008 

% 
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%lnput Variables: 

% rr is source-receiver range 

% zr is receiver depth 

% CHOOSE ONE LOCATION: You can enter the number or the string. 

% 1 = locationl = ['RL080806lronLady']; 

% 2 = location2 = ['RL081006Roma']; 

% 3 = location3 = ['RL081106PetitsCove']; 

% 4 = location4 = ['RL081106Roma']; 

% 5 = location5 = ['RL081206WhaleCove']; 

% 6 = location6 = ['RL081206WhaleCoveB']; 

% 7 = location7 = ['RL081306Longlsland']; 

0/ ************************************************************** 
/O 

%INITIALIZE AND DEFINE VARIABLES 
0/********************************************************************** 
/o 

clear gain hp ppclip d z r x y p1 p2 envy emax RLpp RLE RLrms... 

clicks_analyzed data data_upa meanjevels mean_upa cal gsig fs 

names = {'RLOSOSOeironLady'/RLOSIOOeRoma', 'RL081106PetitsCove',. 

'RL081106Roma','RLOS^OeWhaleCove'.'RLOS^OeWhaleCoveB',... 

'RL081306Longlsland'}; 

if ~isstr(location) 

location = names{location}; 

end 

%lnformation for click extraction and TL calculations 

if strcmp(location, names{1}) 

%lron Lady, 8/8/06 records used: 1,3,5,11,12,16 

if zr == 5 
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if rr == 5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 10; % pp clip level of recording 

elseif rr ==10 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr== 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 
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ppclip = 1; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

elseif strcmp(location, names{2}) 

%Roma, 8/10/06 records used: 24, 25, 27, 28 (ch2), 29, 31, 33 

if zr ==5 

if rr ==5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 
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ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 
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hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

elseif strcmp(location, names{3}) 

%Petit's Cove, 8/11/06 records used: 18,20,21,22,23,24 

if zr ==5 

if rr == 5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 32; %gain of recording system 
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hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.4; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 
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gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr== 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

elseif strcmp(location,names{4}) 

%Roma, 8/11/06 records used: 0,3,6,7,9,12 

if zr ==5 

if rr == 5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 
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gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

278 



elseif rr == 50 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

elseif strcmp(location, names{5}) 

%Whale Cove, 8/12/06 records used: 0 12 3 4 5 6 

if zr ==5 

if rr == 5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 
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elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.4; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

elseif rr == 350 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 
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ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

elseif strcmp(location,names{6}) 

%Whale Cove PART B, 8/12/06 records used: 25 23 22 19 17 15 6 

if zr ==5 

if rr == 5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 
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ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.4; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

elseif rr == 350 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 
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hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr== 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

elseif strcmp(location, names{7}) 

%Long Island, 8/13/06 records used:1 2 3 4 6 7 

if zr ==5 

if rr == 5 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 32; %gain of recording system 
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hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 100 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.4; % pp clip level of recording 

elseif rr == 200 

gain = 32; %gain of recording system 

hp = 4014; %hydrophone used (4014 or 4034) 

ppclip = 0.2; % pp clip level of recording 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 2; % pp clip level of recording 

elseif rr == 50 
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gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr== 100 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

elseif rr == 200 

gain = 60; %gain of recording system 

hp = 4034; %hydrophone used (4014 or 4034) 

ppclip = 1; % pp clip level of recording 

end 

end 

else error ('unrecognized experiment location') 

end 

%recording chain sensitivity PEAK (not pp) 

if hp == 4014 

cal = 187 - gain + 20*log10(ppclip) -6; 

elseif hp == 4034 

cal = 220 - gain + 20*log10(ppclip) -6; 

end 

0/ ********************************************************************** 
/o 

%MEASURE CLICK CHARACTERISTICS 
0/********************************************************************** /o 

load c:\porpoisetldata\click1; %Loads extracted click data saved by 

%clickxtract_sdr 

szf=size(gsig); %store the size of the click matrix as a variable. 
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%matrix has one click per column, 

for i=1 :(szf(2)) %for each click, 

y=gsig(:,i); %y is the ith click waveform 

envy = abs(hilbert(y(1:320))); %calculate the envelope of the 

%first 320 samples of y 

emax=find(envy>0.5*max(envy)); %find the times (in samples) at 

%which the envelope is at least half its maximum level 

d=y(max([1 ,(min(emax)-5)]): 

min([length(y),(min(emax)+70)]));%define the 

%analysis window - it will be 75 samples long maximum, starting 5 

%samples before the time of the minimum envelop level and ending 70 

%samples after. 

z=(d(1:length(d)))'; %reshape d and rename itz 

r=round(80-length(d)); % r is the number of samples one would have 

%to add to z to make it 80 samples long 

x(:,i)=[z zeros(1 ,r)]'; %x is a matrix of click waveforms, one 

%click per column.  Each click is 75 or less samples, zero-padded 

%with r zeros so it is 80 samples long. 

p1=min(x(:,i)); %p1 is the min envelope level of the detected click 

p2=max(x(:,i)); %p2 is the max envelope level of the detected click 

% 1. Received level peak-peak (dB re 1uPa p-p) 

RLpp(:,i)= round(20*log10(p2-(p1))) + cal; % peak-to-peak level 

% 2. Received rms level, dB re. 1uPa (rms) 

RLrms(:,i)= round(10*log10(mean(x(:,i).A2))) + cal; %RMS level in 

%the emax window 

% 3. Received E level, dB re. 1uPa2s 

RLE(:,i) = round(RLrms(:,i)+10*log10((length(x(:,i)))/fs)); %energy 

%level in the emax window 

end 
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0/ ********************************************************************** 
/o 

%0RGANIZE, CONVERT UNITS, AND SAVE DATA 
0/********************************************************************** /o 

data=([RLpp' RLrms' RLE']); %place level data into the matrix "data" 

clicks_analyzed = length(data(:,1)); %countthe number of clicks analyzed 

data_upa = 10.A(data./20); %convert level data in dB into uPascals 

%calculate mean level (pp, rms, and E) of each click 

mean_upa = [mean(data_upa(1:100,1)),mean(data_upa(1:100,2)),... 

mean(data_upa(1:100,3))]; 

%convert the mean levels back to dB 

meanjevels = 20.*log10(mean_upa) 

%calculate standard deviation of level measurements (this is not kosher 

%since really, since the measurements are in dB, and these values are 

%not used in later analysis) 

stdv = std(data(1:100,:)); 

%save data matrix 

save([location '_r' num2str(rr) '_Zr' num2str(zr)], 'clicks_analyzed',... 

'data', 'data_upa', 'meanjevels', 'mean_upa', 'cal', 'gsig' ,'fs') 

Click Level Determination (Danish Datasets) 

function TLauto_sdr_dk(location, rr, zr) 

%Analysis tool to determine peak-peak, RMS, and energy levels of clicks 

%detected by clickxtract_sdr script. For Grand Manan porpoise 

%transmission loss datasets. 

%Written by Peter Madsen, 27 Dec. 2006 

%Modified by Stacy DeRuiter, July 2007, Jan 2008 

% 

%lnput Variables: 
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% rr is source-receiver range 

% zr is receiver depth 

% CHOOSE ONE LOCATION: You can enter the number or the string. 

% 1-3 

0/ ********************************************************* 
/o 

%INITIALIZE AND DEFINE VARIABLES 
0/********************************************************************** /o 

clear gain hp ppclip d z r x y p1 p2 envy emax RLpp RLE RLrms ... 

clicks_analyzed data data_upa meanjevels mean_upa cal gsig fs 

names = {'RL0905067RL112906', 'RL041607', ^070606'}; 

if-isstr(location) 

location = names{location}; 

end 

hp = 4034; %(all measurements made with 4034 hydrophone) 

%lnformation for click extraction and TL calculations 

if strcmp(location, names{1}) 

%location 1 = 9/5/06; 

if zr == 5 

if rr == 5 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr ==10 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 
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elseif rr == 50 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

else 

gain = 60; 

ppclip = 10; 

end 

elseif zr ==3 

if rr == 5 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

ppclip = 10; % pp clip level of recording 

else 

gain = 60; 

ppclip = 10; 
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end 

end 

elseif strcmp(location, names{2}) 

% 2 = location2 = 11/29/06; 

if zr == 5 

if rr == 5 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr ==10 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

else 

gain = 60; 

ppclip = 4; 

end 

elseif zr ==3 

if rr == 5 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 10 
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gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

else 

gain = 60; 

ppclip = 4; 

end 

end 

elseif strcmp(location, names{3}) 

%3 = location3 = 4/16/07; 

if zr == 5 

if rr == 5 

gain = 40; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr ==10 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 
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elseif rr == 50 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

else 

gain = 60; 

ppclip = 4; 

end 

elseif zr ==3 

if rr == 5 

gain = 40; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 10 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 25 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 50 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

elseif rr == 100 

gain = 60; %gain of recording system 

ppclip = 4; % pp clip level of recording 

else 

gain = 60; 

ppclip =4; 
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end 

end 

elseif strcmp(location, names{4}) 

gain = 60; 

ppclip = 10; 

else error ('unrecognized experiment location') 

end 

%recording chain sensitivity PEAK (not pp) 

if hp ==4014 

cal = 187 - gain + 20*log10(ppclip) -6; 

elseif hp == 4034 

cal = 220 - gain + 20*log10(ppclip) -6; 

end 

0/ ******************************************************** 
/o 

%MEASURE CLICK CHARACTERISTICS 
0/ ********************************************************************** 
/o 

load c:\porpoisetldata\click1; %Loads extracted click data saved by 

%clickxtract_sdr 

szf=size(gsig); %store the size of the click matrix as a variable. 

%Matrix has one click per column. 

for i=1:(szf(2)) %for each click, 

y=gsig(:,i); %y is the ith click waveform 

envy = abs(hilbert(y(1:320))); %calculate the envelope of the 

%first 320 samples of y 

emax=find(envy>0.5*max(envy)); %find the times (in samples) at 

%which the envelope is at least half its maximum level 

d=y(max([1 ,(min(emax)-5)]): 
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min([length(y),(min(emax)+70)]));%define the 

%analysis window - it will be 75 samples long maximum, starting 5 

%samples before the time of the minimum envelop level and ending 70 

%samples after. 

z=(d(1:length(d)))'; %reshape d and rename it z 

r=round(80-length(d)); % r is the number of samples one would have 

%to add to z to make it 80 samples long 

x(:,i)=[z zeros(1 ,r)]'; %x is a matrix of click waveforms, one 

%click per column. Each click is 75 or less samples, zero-padded 

%with r zeros so it is 80 samples long. 

p1=min(x(:,i)); %p1 is the min envelope level of the detected click 

p2=max(x(:,i)); %p2 is the max envelope level of the detected click 

% 1. Received level peak-peak (dB re 1uPa p-p) 

RLpp(:,i)= round(20*log10(p2-(p1))) + cal; % peak-to-peak level 

% 2. Received rms level, dB re. 1uPa (rms) 

Rl_rms(:,i)= round(10*log10(mean(x(:,i).A2))) + cal; %RMS level in 

%the emax window 

% 3. Received E level, dB re. 1uPa2s 

RLE(:,i) = round(RLrms(:,i)+10*log10((length(x(:,i)))/fs)); %energy 

%level in the emax window 

end 

0/ ************************************************************ 
/o 

%ORGANIZE, CONVERT UNITS, AND SAVE DATA 
0/********************************************************************** 
/O 

data=([RLpp' RLrms' RLE']); %place level data into the matrix "data" 

clicksanalyzed = length(data(:,1)); %countthe number of clicks analyzed 

data_upa = 10.A(data./20); %convert level data in dB into uPascals 
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%calculate mean level (pp, rms, and E) of each click 

mean_upa = [mean(data_upa(1:100,1)),mean(data_upa(1:100,2)),... 

mean(data_upa(1:100,3))]; 

%convert the mean levels back to dB 

meanjevels = 20.*log10(mean_upa); 

%calculate standard deviation of level measurements (this is not OK 

%really, since the measurements are in dB, and so these values are not 

%used in later analysis) 

stdv = std(data(1:100,:)); 

%save data matrix 

save([location '_r' num2str(rr) '_Zr' num2str(zr)], 'clicks_analyzed\... 'data', 

'data_upa', 'meanjevels', 'mean_upa', 'cal', 'gsig' ,'fs') 

Matlab Code Used in Chapter 5 (Rotation Test & Semi-Markov Chain) 

Example Sperm Whale Audit Data File 

% swaudit.m 

% example sperm whale audit file example 

% Stacy DeRuiter, June 2008 

% Data included: 

% 1. variable, CST 

% columns of CST are: 

seconds-from-tagon to the start of the buzz 

duration of the buzz in seconds 

1 if there is a blow sound following the 

fast run, 0 otherwise 

4: length of the pause following the fast run in seconds. 

NaN if the fast run is at the end of a dive and 

coincides with the end of clicking. 

% 2. variable, PAUSE 
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% columns of PAUSE are: 

%       1: time in seconds-from-tagon of the start of the pause 

%       2: duration of the pause in seconds 

%       3: 1 if there is a blow sound after the pause, 0 if not 

% 3. variable, CLICKING 

% columns of CLICKING are: 

%       1: time in seconds-from-tagon of start of regular clicking 

%       2: time in seconds-from-tagon of end of regular clicking 

CST = [ 

4040.9 11.7    0   2.5 

4225.6 5.1 1   4.9 

44526.7 1.0 1 5.3 

]; 

PAUSE = [ 

163.0   21.0    1 

264.9   5.7 1 

23938.6 5.7 1 

]; 

CLICKING = [ 

155.0   2195.9 

3575    5842.3 

]; 

Rotation Test for Changes in Buzz Rate (single whale) 

function [Nc_rot] = ICI_agunonoff_rate(auditfile,n) 

%ICI_agunonoff_rate - for one whale 
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%test the hypotheses that... 

%null: the creak rate is the same during both control and airgun conditions 

%alternate: the creak rate is lower during airgun conditions. 

%n is the number of iterations for the rotation test/randomization. 

%auditfile is a string containing the name of the m-file in which sperm 

%whale behavior data is stored. 

%Written by Stacy DeRuiter, 2007-2008 

0/ ********************************************************** 
/o 

%INITIALIZE 
0/  ********************************************************************** 
/o 

% enter the data for each whale (audit data on creak times, and 

% time of airgun start/stop); organize the data for analysis. 

if strcmp(auditfile/sw02_253aaud') 

Tss = 2639.9; 

Tse = 5651.1; 

Tss2 = •; Tse2=n; 
id = '253a'; 

elseif strcmp(auditfile,'sw02_254aaud') 

Tss = 5531.6; 

Tse = 8198.8; 

Tss2 = 9012.2; 

Tse2 = 10190.8; 

id = '254a'; 

elseif strcmp(auditfile,'sw02_254baud') 

Tss = 3455.6; 

Tse = 6309.5; 
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Tss2 = 7428.5; 

Tse2 = 8708.8; 

id = '254b'; 

elseif strcmp(auditfile,'sw02_254caud') 

Tss = 4308.2; 

Tse = 7156.3; 

Tss2 = 8275.3; 

Tse2 = 9549.5; 

id = '254c'; 

elseif strcmp(auditfile,'sw03_164aaud') 

Tss = 22021; 

Tse = 24843; 

Tss2 = []; Tse2=[]; 

id = '164a'; 

elseif strcmp(auditfile,'sw03_165aaud') 

Tss= 1777.9; 

Tse = 6554.3; 

Tss2 = []; Tse2=[]; 

id = '165a'; 

elseif strcmp(auditfile,'sw03_165baud') 

Tss = 8233.1; 

Tse = 13107.9; 

Tss2 = Q; Tse2=[]; 

id = '165b'; 

else 

error('Unrecognized audit file name') 

end 

eval(auditfile); %this puts all the audit (whale behavior) data into 

%the Matlab workspace 
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ctO = CST(:,1 );%col 1 of ctO is time cues of creaks in seconds since tagon 

CLICKING(:,3) = cumsum(CLICKING(:,2) - CLICKING(:,1)); %each row of 

%CLICKING is a dive; 1st col. is start of reg clicking = foraging; 

%2nd is end of reg clicking; 3rd column is total time regular clicking 

%(cumulative) after that dive 

%We want col 1 of ct to be time cues of creaks in seconds of foraging 

%time (disinclude surface/silent time), so... 

%calculate total time spent clicking 

totalclickingdur = CLICKING(end,3); 

%convert data on buzz times from seconds-since-tagon to 

%seconds-since-start-of-foraging 

fori = 1:length(ct0) 

d = find(CLICKING(:,2) > ctO(i), 1 , 'first'); 

if d == 1 %if it's the first dive, 

%time since start of clicking is seconds-since-tagon minus 

%start of first-dive regular clicking 

ct(i,1) = ct0(i,1) - CLICKING(d,1); 

else %for other dives, 

%time since start of clicking is seconds-since-tagon minus 

%start of current dive plus total clicking time on previous 

%dives 

ct(i,1) = ct0(i,1) - CLICKING(d,1) + CLICKING(d-1,3); 

end 

end 

%make sure all the buzz events are in chronological order (if they are 

%not, there is an error in the audit file.) 

if Hsempty(find(diff(ct) < 0)) 

find(diff(ct) < 0) 

error('There is an error in the audit file; not all creaks are in... 
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sequential order.') 

end 

%FIND Nc, number of buzzes during control conditions: 

agunjnd = zeros(length(ct),1); %preallocate space 

if isempty(Tss2) 

agun_ind(find(ct >= Tss & ct < Tse)) = 1; %if agunjnd is 1, then 

%it's airgun conditions 

%if agunjnd is 0, it's control conditions 

%case 2: when there are 2 airgun exposure periods 

else 

agun_ind(find(ct >= Tss & ct < Tse)) = 1; 

agun_ind(find(ct >= Tss2 & ct < Tse2)) = 1; 

%if agunjnd is 1, then it's airgun conditions 

%else, it's control conditions (INCLUDING times when airgun 

%exposure was halted temporarily for mitigation), 

end 

Ntot = length(agunind); %total number of buzzes 

Na = sum(agunjnd);%number of creaks during airgun conditions 

Nc = Ntot - Na %number of creaks during control conditions 

Ttot = CLICKING(end,3); %total duration of foraging observed 

%Calculate airgun exposure duration in seconds: 

if isempty(Tss2) 

Ta = Tse - Tss; 

else 

Ta = (Tse - Tss) + (Tse2 - Tss2) 

end 

Tc = Ttot - Ta; %calculate control conditions duration 

%under the assumption that the creak rates are Poisson, and under the 
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%null, the number of creaks during control conditions 

%should be binomially distributed with (n = total number of creaks) 

%tries and p = Tc/Ttot (Tc is total control time, and Ttot is total 

%time). So we can calculate a p-value: 

p_poisson = 1 - binocdf(Nc , Ntot, Tc/Ttot);%one sided test for alt. 

%hyp. = Nc larger than observed 

disp(['P-value (assuming rates are Poisson) < ' num2str(p_poisson)]); 

%try to estimate Beta (the factor by which creak rate is multiplied 

%during airgun conditions) 

%calculate binomial distribution fit and alpha = 0.05 confidence 

% intervals 

[phat, pci] = binofit(Nc,Ntot, 0.05); 

beta = Tc*(1-phat)/(phat*Ta); 

beta_CI95 = Tc.*(1-pci)./(pci.*Ta); 

disp(['During airgun conditions, the creak rate was beta = ' num2str(beta)' times 

the rate during control conditions.']) 

disp([The 95 percent confidence interval for beta is ' num2str(beta_CI95)'.']) 

0/********************************************************************** 
/o 

%Relax the Poisson assumption 

%and do a rotation test instead of the parametric test. Nc is the test 

%statistic. 
0/********************************************************************** 
/o 

for k = 1 :n 

ca = rand(1,1).*Ttot; %generate a random number between 0 and Ttot 

ct_rand = ct + ca; %rotate the ct event vector by ca seconds 

v = find(ct_rand > Ttot); %for events that now occur at times after 

%Ttot, 
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ct_rand(v) = ctrand(v) - Ttot; %subtract Ttot so they occur at the 

%start of the record 

ct_rand = sort(ct_rand); %sort the rotated ct data 

ai_rand = zeros(length(ct_rand),1); %allocate space 

%if there is only one airgun exposure: 

if isempty(Tss2) 

ai_rand(find(ct_rand >= Tss & ct_rand < Tse)) = 1; %if ai_rand 

%is 1, then it's airgun conditions 

%if ai_rand is 0, it's control conditions 

%case 2: when there are 2 airgun exposure periods 

else 

ai_rand(find(ct_rand >= Tss & ct_rand < Tse)) = 1; 

ai_rand(find(ct_rand >= Tss2 & ct_rand < Tse2)) = 1; 

%if ai_rand is 1, then it's airgun conditions 

%else, it's control conditions (INCLUDING times when airgun 

%exposure was halted temporarily for mitigation), 

end 

Na_rot(k) = sum(ai_rand);%number of creaks during airgun conditions 

Nc_rot(k) = Ntot - Na_rot(k); %number of creaks during control 

%conditions 

end 

%plot a histogram of Nc_rot 

figure(1); elf; 

hist(Nc_rot,40); 

set(gca,'FontName','Palatino', *LineWidth',3,'FontSize', 12);%set font 

%type and size for the figure 

title('Histogram of Nc (test statistic; from rotation test)') 

xlabel(['Number of creaks during control period; Nc is ' num2str(Nc)]); 

%find the p-value of the test 
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%p_rot = length(find(Nc_rot > Nc))/n; %one sided 

p_rot = 2*length(find(Nc_rot > Nc))/n; %2 sided 

disp(['p-value (rotation test) is ' num2str(p_rot)]); 

%Save data, if desired 

%save(['onoffdata2_' eval('id')], 'cf, 'Nc', 'Nc_rof, 'beta',... 'beta_CI95\ 

'p_poisson', 'p_rof, 'Ntof.'Ttot'/Tc'); 

Semi-Markov Chain Analysis 

%GSCP_MCsim.m 

%script to fit a semi-Markov chain to whale foraging behavior data and 

%test the null hypothesis that the same sMC foraging behavior model 

%fits the data during airgun exposure and control time periods. 

%Stacy DeRuiter, 2007-2008 

0/ ************************************************************ 
/0 

%INITIALIZE AND DEFINE VARIABLES 
0/ ********************************************************************** 
/O 

load WHALE 

%the WHALE .mat-file must contain the following: 

%   1. WHALE (a matrix). WHALE summarizes the timing of whale foraging 

%       events. 

%       Column 1 of whale contains the time, in seconds since start of 

%       foraging (not inlcuding other time periods), of each event. 

%       Column 2 of whale is 1 if the event is search, 2 if buzz, 3 if 

%       pause. 

%       Column 3 of whale is the duration of the event in seconds. 

%   2. Tss and Tse (scalar variables). Tss is the time in seconds of 

%      the start of airgun exposure. Tse is the time in seconds of the 
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%      end of 

%      airgun exposure. 

% 3. Tss2 and Tse2 (scalar variables). Start and end times of the 

%      seconds airgun exposure. Tss2 and tse2 should be [] if there 

%      was only 1 exposure period. 

% 4. agun_ind (vector variable). agun_ind is the same length of 

%      WHALE(:,1).  It is 1 if the event start time is during airgun 

%      exposure, and zero otherwise. 

WHALE_ctl = WHALE(find(agun_ind == 0),:);%store the subset of WHALE 

%that occurred during control conditions in WHALE_ctl. 

WHALE_agun = WHALE(find(agun_ind == 1),:);%store the subset of WHALE 

%that occurred during airgun exposure in WHALE_agun. 

logl_null_rand_all = zeros(10000,1 );%pre-allocate space 

log l_a It ra nd_a 11 = zeros(10000,1 );%pre-allocate space 

0/ ******************************************************** 
/O 

%PARAMETER CALCULATIONS 

%Calculate needed parameters: 

%1. fit a gamma distribution to the observed dist of all waiting 

%times for each state 

%2. fit a gamma dist to the control/airgun waiting times 

%separately 

%3. matrices of transitions for all times, and for ctl and airgun 

%times separately 
0/********************************************************************** 
/o 

%1. fit a gamma distribution to the observed dist of all waiting times 

%    for each state 
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%a. search state 

sdur = WHALE(find(WHALE(:,2)==1),3); %a set of all search waiting 

%times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

a_null(1) = d(1); b_null(1) = d(2); %store parameters in variables 

%a_null and bnull 

%b. creak state 

cdur = WHALE(find(WHALE(:,2)==2),3); %a set of all buzz waiting times 

d = gamfit(cdur); %parameters of a gamma dist fit to the cdur data 

a_null(2) = d(1); b_null(2) = d(2);%store parameters in variables 

%a_null and bnull 

%c. pause state 

pdur = WHALE(find(WHALE(:,2)==3),3); %a set of all pause waiting 

%times 

d = gamfit(pdur);%parameters of a gamma dist fit to the pdur data 

a_null(3) = d(1); b_null(3) = d(2);%store parameters in variables 

%a_null and bnull 

%2. fit gamma dists to ctl and airgun times separately 

%CONTROL 

%a. search state 

sdur = WHALE(find(WHALE(:,2)==1 & agunjnd == 0),3); 

%a set of all search waiting times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

a_ctl(1) = d(1); b_ctl(1) = d(2);%store parameters in variables a_ctl and b_ctl 

%b. creak state 

cdur = WHALE(find(WHALE(:,2)==2 & agunjnd ==0),3); %a set of all buzz 

%waiting times 

d = gamfit(cdur);%parameters of a gamma dist fit to the cdur data 

a_ctl(2) = d(1); b_ctl(2) = d(2);%store parameters in variables a_ctl %and b_ctl 
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%c. pause state 

pdur = WHALE(find(WHALE(:,2)==3 & agunjnd ==0),3); %a set of all pause 

%waiting times 

d = gamfit(pdur);% para meters of a gamma dist fit to the pdur data 

a_ctl(3) = d(1); b_ctl(3) = d(2);%store parameters in variables a_ctl %and %b_ctl 

%AIRGUN EXPOSURE 

%a. search state 

sdur = WHALE(find(WHALE(:,2)==1 & agunjnd ==1 ),3); %a set of all search 

%waiting times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

a_agun(1) = d(1); b_agun(1) = d(2);%store parameters in variables 

%a_agun and b_agun 

%b. creak state 

cdur = WHALE(find(WHALE(:,2)==2 & agunjnd ==1),3); %a set of all buzz 

%waiting times 

d = gamfit(cdur); %parameters of a gamma dist fit to the cdur data 

a_agun(2) = d(1); b_agun(2) = d(2);%store parameters in variables 

%a_agun and bjagun 

%c. pause state 

pdur = WHALE(find(WHALE(:,2)==3 & agunjnd ==1 ),3); %a set of all pause 

%waiting times 

d = gamfit(pdur);%parameters of a gamma dist fit to the pdur data 

a_agun(3) = d(1); b_agun(3) = d(2);%store parameters in variables 

%a_agun and bjagun 

%3. Find transition matrices (A) between states for a.) all data, b). control 

%data, and c). airgun data. Each matrix is 3 by 3; row/col 1 %is search, 2 

%is creak, 3 is pause, entry 1,2 is FROM search TO creak. 

ntransjiull = length(WHALE) -1; %the total number of transitions 

%preallocate space 
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T_null = zeros(3,3); Tctl = zeros(3,3); T_agun = zeros(3,3); 

for i = 1:3 

for j = 1:3 

for k = 1 :ntrans_null %repeat for all observed transitions 

if WHALE(k,2) == i && WHALE(k+1,2) == j %if transition from 

%state i to state j occurs, 

T_null(i,j) = T_null(i,j) + 1;%add 1 to the i,j entry 

%in matrix T-null, which records the number of each 

%type of transition that has occurred 

if agun_ind(k) == 0; %if the transition was in control 

%conditions, 

T_ctl(i,j) = T_ctl(i,j) + 1; %log it in T_ctl as 

%well as in T_null; 

elseif agun_ind(k) == 1; %if the transition was in 

%airgun exposure conditions, 

T_agun(i,j) = T_agun(i,j) + 1; %log it in T_agun as 

%well as in T_null. 

else %if agun_ind and WHALE do not align, ERROR. 

error('mismatch between agun indicator vector and... 

WHALE matrix') 

end 

end 

end 

end 

end 

A_null = T_null./[sum(T_null,2),sum(T_null,2),sum(T_null,2)]; %transition 

%matrix as proportions 

A_ctl = T_ctl./[sum(T_ctl,2),sum(T_ctl,2),sum(T_ctl,2)]; %transition 

%matrix as proportions 
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A_agun = T_agun./[sum(T_agun,2),sum(T_agun,2),sum(T_agun,2)]; %transition 

%matrix as proportions 

0/ ************************************************************** 
/o 

%LIKEUHOOD RATIO CALCULATION 
0/  A********************************************************************* /o 

%Calculate the log likelihood... 

%...for all conditions together (null) 

logl null = 0; %initialize 

for i = 1:length(WHALE)-1 %calculate likelihood of all events in WHALE 

j = WHALE(i,2); %j is the event type for event i, the "current" 

%event (1=search, 2=buzz, 3=pause) 

k = WHALE(i+1,2);%k is the "next" event (event i+1) type 

%(1=search, 2=buzz, 3=pause) 

p = A_null(j,k); %p is the probability (from transition matrix) of 

%j to k transition 

Pp = gampdf(WHALE(i,3),a_nullG),b_null(j)); %Pp is the 

%probability that a j event will last as long as event i did 

logl_null = loglnull + log(p) + log(Pp);%log likelihood of the 

%time-series up to event i = sum of likelihoods of previous events 

%+ log(p) + log(Pp) 

end 

%...under the alternate hyp 

loglalt = 0; %initialize 

for i = 1:length(WHALE)-1%calculate likelihood of all events in WHALE 

if agunjnd(i) == 0%for events that began during control periods, 

j = WHALE(i,2);%j is the event type for event i, the "current" 
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%event (1=search, 2=buzz, 3=pause) 

k = WHALE(i+1,2);%k is the "next" event (event i+1) type 

%(1=search, 2=buzz, 3=pause) 

p = A_ctl(j,k);%p is the probability (from transition matrix) 

%of j to k transition during control conditions 

Pp = gampdf(WHALE(i,3),a_ctl(j),b_ctlG)); %Pp is the 

%probability that a j event, during control conditions, will 

%last as long as event i did 

logl_alt = logl_alt + log(p) + log(Pp);%log likelihood of the 

%time series up to event i = sum of likelihoods of previous 

%events + log(p) + log(Pp) 

elseif agun_ind(i) == 1 

j = WHALE(i,2);%j is the event type for event i, the "current" 

%event (1=search, 2=buzz, 3=pause) 

k = WHALE(i+1,2);%k is the "next" event (event i+1) type 

%(1=search, 2=buzz, 3=pause) 

p = A_agun(j,k);%p is the probability (from transition matrix) 

%of j to k transition during airgun exposure 

Pp = gampdf(WHALE(i,3),a_agun(j),b_agun(j)); %Pp is the 

%probability that a j event, during airgun exposure, will last 

%as long as event i did 

loglalt = loglalt + log(p) + log(Pp);%log likelihood of the 

%time series up to event i = sum of likelihoods of previous 

%events + log(p) + log(Pp) 

else 

error('problem with agun_ind vector') %note error if agun_ind 

%and whale don't match up in length 

end 

end 
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%calculate the likelihood ratio test statistic for the data 

TS_data = 2*(logl_alt - logl_null); 

0/ ********************************************************************** 
/o 

%Markov Chain Monte Carlo test to determine test stat significance 
0/ ********************************************************************** 
/o 

Ttot = WHALE(end,1) + WHALE(end,3); %calculate the total duration of 

%the dataset 

TS_rand = zeros(10000,1); %preallocate space 

for nn = 1:10000 %do 10000 rotations 

%Output rotation number so user can track progress of analysis 

disp(['MC randomization number' num2str(nn)' of 10000 for"... 

name]) 

%Make a synthetic data set the same duration as the real one under 

%the null hypothesis 

s1 = WHALE(1,2); %initial state is same as real whale 

clear WHALE_rot 

WHALE_rot(1,:) = [0, s1, gamrnd(a_null(s1),b_null(s1))];%first 

%event a time 0, with duration = a random sample from a gamma 

%distro with parameters a_null, b_null 

while WHALE_rot(end,1) < Ttot %continue until the synthetic dataset 

%is Ttot seconds long 

x = rand(1); %generate a random number 

statenow = WHALE_rot(end,2); %store the number of the current 

%state in the variable "statenow" 

nextevent = WHALE_rot(end,1) + WHALE_rot(end,3); % calculate 

%the time at which the next event will begin 
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if x <= A_null(statenow,1) 

nextstate = 1; %next state is search with probability 

%A_null(statenow,1) 

elseif x <= (A_null(statenow,1) + A_null(statenow,2)) 

nextstate = 2;%next state is buzz with probability 

%A_null(statenow,2) 

else 

nextstate = 3;%next state is pause with probability 

%A_null(statenow,3) 

end 

nextdur = gamrnd(a_null(nextstate),b_null(nextstate)); 

%duration of next state is a random sample from a gamma distro 

%with parameters a_null, bnull 

WHALE_rot = [WHALE_rot; nextevent nextstate nextdur]; %add the 

%time, ID, and duration of the "next state" to the WHALE_rot 

%synthetic data matrix 

end 

%make airgun index vector for this rotation 

ai_rand = zeros(length(WHALE_rot),1); %preallocate space 

if isempty(Tss2) %if there is only 1 airgun exposure period in 

%the real data 

ai_rand(find(WHALE_rot(:,1) >= Tss & WHALE_rot(:,1) ... 

< Tse))=1; 

%if agunjnd is 1, then it's airgun conditions 

else %if there are 2 airgun exposure periods in the real data 

ai_rand(find(WHALE_rot(:,1) >= Tss & WHALEjot(:,1) < ... 

Tse)) = 1 ;%if agunjnd is 1, then it's airgun conditions 

ai_rand(find(WHALE_rot(:,1) >= Tss2 & WHALE_rot(:,1) < ... 

Tse2)) = 1 ;%if agunjnd is 1, then it's airgun conditions 
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end 

%fit the gamma distros 

%1. fit a gamma distribution to the observed dist of all 

%waiting times for each state 

%a. search state 

sdur_rand = WHALE_rot(find(WHALE_rot(:,2)==1),3); %a set of all 

%search waiting times 

d = gamfit(sdur_rand); %parameters of a gamma dist fit to the 

%sdurdata 

ar_null(1) = d(1); br_null(1) = d(2);%store parameters in 

%variables arnull and br_null 

%b. creak state 

cdur_rand = WHALE_rot(find(WHALE_rot(:,2)==2),3); %a set of all 

%buzz waiting times 

d = gamfit(cdur_rand); %parameters of a gamma dist fit to the 

%cdur data 

ar_null(2) = d(1); br_null(2) = d(2);%store parameters in 

%variables ar_null and br_null 

%c. pause state 

pdur_rand = WHALE_rot(find(WHALE_rot(:,2)==3),3); %a set of all 

%pause waiting times 

d = gamfit(pdur_rand);%parameters of a gamma dist fit to the 

%pdur data 

ar_null(3) = d(1); br_null(3) = d(2);%store parameters in 

%variables ar_null and brnull 

%2. fit gamma dists to ctl and airgun times separately 

%CONTROL 

%a. search state 

sdur = WHALE_rot(find(WHALE_rot(:,2)==1 & ai_rand == 0),3); %a set 
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%of all search waiting times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

ar_ctl(1) = d(1); br_ctl(1) = d(2);%store parameters in variables 

%ar_ctl and brctl 

%b. creak state 

cdur = WHALE_rot(find(WHALE_rot(:,2)==2 & ai_rand ==0),3); %a set 

%of all buzz waiting times 

d = gamfit(cdur);%parameters of a gamma dist fit to the cdur data 

ar_ctl(2) = d(1); br_ctl(2) = d(2);%store parameters in variables 

%ar_ctl and br_ctl 

%c. pause state 

pdur = WHALE_rot(find(WHALE_rot(:,2)==3 & ai_rand ==0),3); %a set 

%of all pause waiting times 

d = gamfit(pdur);%parameters of a gamma dist fit to the pdur data 

ar_ctl(3) = d(1); br_ctl(3) = d(2);%store parameters in variables 

%ar_ctl and br_ctl 

%AIRGUN 

%a. search state 

sdur = WHALE_rot(find(WHALE_rot(:,2)==1 & ai_rand ==1),3); %a set 

%of all search waiting times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

ar_agun(1) = d(1); br_agun(1) = d(2);%store parameters in variables 

%ar_agun and br_agun 

%b. creak state 

cdur = WHALE_rot(find(WHALE_rot(:,2)==2 & ai_rand ==1),3); %a set 

%of all buzz waiting times 

d = gamfit(cdur); %parameters of a gamma dist fit to the cdur data 

ar_agun(2) = d(1); br_agun(2) = d(2);%store parameters in variables 

%ar_agun and br_agun 
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%c. pause state 

pdur = WHALE_rot(find(WHALE_rot(:,2)==3 & ai_rand ==1),3); %a set 

%of all pause waiting times 

d = gamfit(pdur);%parameters of a gamma dist fit to the pdur data 

ar_agun(3) = d(1); br_agun(3) = d(2);%store parameters in variables 

%ar_agun and bragun 

%3. Find transition matrices (A) between states for a.) all data, 

%b). control data, and c). airgun data. Each matrix is 3 by 3; 

%row/col 1 is search, 2 is creak, 3 is pause, entry 1,2 is FROM 

%search TO creak. 

ntrans_null = length(WHALErot) -1; %the total number of 

%transitions 

T_null_rand = zeros(3,3); T_ctl_rand = zeros(3,3); 

T_agun_rand = zeros(3,3); %preallocate space 

for i = 1:3 

for j = 1:3 

for k = 1:ntrans_null%repeat for all observed transitions 

if WHALE_rot(k,2) == i && WHALE_rot(k+1,2) == j %if 

%transition from state i to state j occurs, 

T_null_rand(i,j) = T_null_rand(i,j) + 1; %add 1 to 

%the i,j entry in matrix T_null_rand, which records 

%the number of each type of transition that has 

%occurred 

if airand(k) == 0; %if the transition was in 

%control conditions, 

T_ctl_rand(i,j) = T_ctl_rand(i,j) + 1; %log it 

%in T_ctl_rand as well as in T_null_rand; 

elseif airand(k) == 1 ;%if the transition was in 

%airgun conditions, 
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T_agun_rand(i,j) = T_agun_rand(i,j) + 1 ;%log it 

%in T_agun_rand as well as in T_null_rand. 

else 

error('mismatch between agun indicator vector... 

and WHALE_rot matrix") 

end 

end 

end 

end 

end 

A_null_rand = T_null_rand./[sum(T_null_rand,2), ... 

sum(T_null_rand,2),sum(T_null_rand,2)]; %transition matrix as 

%proportions 

A_ctl_rand = T_ctl_rand./[sum(T_ctl_rand,2),sum(T_ctl_rand,2),... 

sum(T_ctl_rand,2)]; %transition matrix as proportions 

Aagunrand = T_agun_rand./[sum(T_agun_rand,2), ... 

sum(T_agun_rand,2), sum(T_agun_rand,2)]; %transition matrix as 

%proportions 
0/ ****************************************************************** 
/o 

%LIKELIHOOD RATIO CALCULATION FOR ROTATED DATA 
0/*******************+************************************************** 
/o 

%Calculate the log likelihood... 

%...for all conditions together (null) 

logl_null_rand = 0; %initialize 

for i = 1:length(WHALE_rot)-1 %repeat for all events 

j = WHALE_rot(i,2); %j is the event type for event i, the 

%"current" event (1=search, 2=buzz, 3=pause) 

k = WHALE_rot(i+1,2); %k is the "next" event (event i+1) type 

%(1=search, 2=buzz, 3=pause) 
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p = A_null_rand(j,k); %p is the probability (from transition 

%matrix) of j to k transition 

Pp = gampdf(WHALE_rot(i,3),ar_nullG),br_null(j)); %Pp is the 

%probability that a j event will last as long as event i did 

logl_null_rand = logl_null_rand + log(p) + log(Pp);%log 

%likelihood of the time-series up to event i = sum of 

%likelihoods of previous events + log(p) + log(Pp) 

end 

%...under the alternate hyp 

logl_alt_rand = 0; 

for i = 1:length(WHALE_rot)-1 

if ai_rand(i) == 0 %if the event occurred during control 

%conditions, 

j = WHALE_rot(i,2);%j is the event type for event i, the 

%"current" event (1=search, 2=buzz, 3=pause) 

k = WHALE_rot(i+1,2);%k is the "next" event (event i+1) 

%type (1=search, 2=buzz, 3=pause) 

p = A_ctl_rand(j,k);%p is the probability (from transition 

%matrix) of j to k transition during control conditions 

Pp = gampdf(WHALE_rot(i,3),ar_ctlG),br_ctl(j)); %Pp is 

%the probability that a j event, during control 

%conditions, will last as long as event i did 

logl_alt_rand = logl_alt_rand + log(p) + log(Pp);%log 

%likelihood of the time-series up to event i = sum of 

%likelihoods of previous events + log(p) + log(Pp) 

elseif ai_rand(i) == 1%otherwise, if the event occurred during 

%airgun exposure, 

j = WHALE_rot(i,2);%j is the event type for event i, the 

%"current" event (1=search, 2=buzz, 3=pause) 
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k = WHALE_rot(i+1,2);%k is the "next" event (event i+1) 

%type (1=search, 2=buzz, 3=pause) 

P = A_agun_rand(j,k);%p is the probability (from 

%transition matrix) of j to k transition during airgun 

%exposure 

Pp = gampdf(WHALE_rot(i,3),ar_agun(j),br_agun(j)); %Pp is 

%the probability that a j event, during airgun exposure, 

%will last as long as event i did 

logl_alt_rand = logl_alt_rand + log(p) + log(Pp);%log 

%likelihood of the time-series up to event i = sum of 

%likelihoods of previous events + log(p) + log(Pp) 

else 

error('problem with ai_rand vector') 

end 

end 

%calculate the TS for this rotation 

TS_rand(nn) = 2*(logl_alt_rand - logl_null_rand); 

logl_alt_rand_all(nn) = logl_alt_rand; 

logl_null_rand_all(nn) = logl_null_rand; 

%save parameters from the rotations 

A_null_rand_all(:,:,nn) = A_null_rand; 

A_agun_rand_all(:,:,nn) = A_agun_rand; 

A_ctl_rand_all(:,:,nn) = A_ctl_rand; 

ar_null_all(nn,:) = ar_null; 

br_null_all(nn,:) = br_null; 

ar_ctl_all(nn,:) = arctl; 

br_ctl_all(nn,:) = brctl; 

ar_agun_all(nn,:) = aragun; 

br_agun_all(nn,:) = br_agun 
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end 
0/ ****************************************************** 
/0 

%CALCULATE P-VALUE OF PARAMETRIC TEST AND SAVE DATA/OUTPUT 
0/********************************************************************** 
/o 

%Calculate the p-value of the test 

pvalue = length(find(TS_rand > TS_data))/10000; 

%save output 

save(['gscpsim_' name],'pvalue', TS_data', TS_rand', 'A_null', ... 

'A_ctr, 'A_agun', 'a_null', 'b_null\ 'a_ctl', 'b_ctl', 'a_agun',... 

'b_agun', 'logl_null\ 'logl_alt\ 'logl_null_rand_all',... 

'logl_alt_rand_aH', 'A_null_rand_aH', 'A_agun_rand_all', ... 

'A_ctLrand_all', 'ar_null_all', 'br_null_aN', 'ar_ctl_all',... 

'brctlall', 'ar_agun_all', 'br_agun_aH'); 

%Rotation test to determine significance of the test statistic 
n/ 11111111 II it 1111 ti ii it 11111111 n n n ti it 11 it ti ti u a n 11 ti ti u n 11 it H ti u 11 it a n tt a it tt a ti it it it ti ti 1111 a ti 11 it it it n a 11 
l U II II It tt It IT tl tl tt IT till II II it tilt It It tt tt tr tt it ft ft TI it tt tt TT TI tl tt tt TT It tl tt tt It It tl tt tt Tt tt TT It It tf TT IT Tt tt IT tt IT TT Tt tt TI tt 

Ttot = WHALE(end,1) + WHALE(end,3); %total time in this whale record %(sum 

is total time for all whales) 

%preallocate space; 

TS_rand = ones( 10000,1); 

logl_alt_rand_all = ones(10000,1); 

logl_null_rand_all = ones(10000,1); 

if isempty(Tss2) 

Tss_rand = zeros( 10000,1); 

Tse_rand = zeros( 10000,1); 

Tss2 = []; 

318 



Tse2 = []; 

adur = Tse - Tss; 

else 

Tss_rand = zeros( 10000,1); 

Tse_rand = zeros(10000,1); 

Tss2_rand = zeros(10000,1); 

Tse2_rand = zeros(10000,1); 

adur = Tse2 - Tss; 

end 

for nn = 1:10000 %do 10000 rotations 

disp(['rotation ' num2str(nn)' of 10000 for whale ' name]); 

clear ai_rand 

%calculate random airgun start (Tss) and end (Tse) times: 

if isempty(Tss2) %for experiments with one airgun exposure period 

Tss_rand(nn) = trand(nn)*(Ttot - adur); 

Tse_rand(nn) = Tss_rand(nn) + adur; 

else %for experiments with two airgun periods 

Tss_rand(nn) = trand(nn)*(Ttot - adur); 

Tse_rand(nn) = Tss_rand(nn) + (Tss-Tse); 

Tss2_rand(nn) = Tss_rand(nn) + adur - (Tse2-Tss2); 

Tse2_rand(nn) = Tss_rand(nn) + adur; 

end 

%make airgun index vector for this rotation 

ai_rand = zeros(length(WHALE),1); %preallocate space 

if isempty(Tss2) 

ai_rand(find(WHALE(:,1) >= Tss_rand(nn) & WHALE(:,1) < ... 

Tse_rand(nn))) = 1; %if agunjnd is 1, then it's airgun 

%conditions 
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else 

ai_rand(find(WHALE(:,1) >= Tss_rand(nn) & WHALE(:,1) <... 

Tse_rand(nn))) = 1; 

ai_rand(find(WHALE(:,1) >= Tss2_rand(nn) & WHALE(:,1) < ... 

Tse2_rand(nn))) = 1; 

end 

%fit the gamma distros 

%1. fit a gamma distribution to the observed dist of all waiting 

%times for each state 

%a. search state 

sdur_rand = WHALE(find(WHALE(:,2)==1),3); %a set of all search 

%waiting times 

d = gamfit(sdur_rand); %parameters of a gamma dist fit to the sdur 

%data 

ar_null(1) = d(1); br_null(1) = d(2); 

%b. creak state 

cdur_rand = WHALE(find(WHALE(:,2)==2),3); %a set of all buzz 

%waiting times 

d = gamfit(cdur_rand); %parameters of a gamma dist fit to the cdur 

%data 

ar_null(2) = d(1); br_null(2) = d(2); 

%c. pause state 

pdur_rand = WHALE(find(WHALE(:,2)==3),3); %a set of all pause 

%waiting times 

d = gamfit(pdur_rand);%parameters of a gamma dist fit to the pdur 

%data 

ar_null(3) = d(1); br_null(3) = d(2); 

%2. fit gamma dists to ctl and airgun times separately 

%CONTROL 
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%a. search state 

sdur = WHALE(find(WHALE(:,2)==1 & ai_rand == 0),3); %a set of all 

%search waiting times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

ar_ctl(1) = d(1);br_ctl(1) = d(2); 

%b. creak state 

cdur = WHALE(find(WHALE(:,2)==2 & ai_rand ==0),3); %a set of all 

%buzz waiting times 

d = gamfit(cdur);%parameters of a gamma dist fit to the cdur data 

ar_ctl(2) = d(1); br_ctl(2) = d(2); 

%c. pause state 

pdur = WHALE(find(WHALE(:,2)==3 & ai_rand ==0),3); %a set of all 

%pause waiting times 

d = gamfit(pdur);%parameters of a gamma dist fit to the pdur data 

ar_ctl(3) = d(1); br_ctl(3) = d(2); 

%AIRGUN 

%a. search state 

sdur = WHALE(find(WHALE(:,2)==1 & ai_rand ==1 ),3); %a set of all 

%search waiting times 

d = gamfit(sdur); %parameters of a gamma dist fit to the sdur data 

ar_agun(1) = d(1); br_agun(1) = d(2); 

%b. creak state 

cdur = WHALE(find(WHALE(:,2)==2 & ai_rand ==1),3); %a set of all 

%buzz waiting times 

d = gamfit(cdur); %parameters of a gamma dist fit to the cdur data 

ar_agun(2) = d(1); br_agun(2) = d(2); 

%c. pause state 

pdur = WHALE(find(WHALE(:,2)==3 & ai_rand ==1 ),3); %a set of all 

%pause waiting times 
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d = gamfit(pdur);%parameters of a gamma dist fit to the pdur data 

ar_agun(3) = d(1); br_agun(3) = d(2); 

%3. Find transition matrices (A) between states for a.) all data, 

%b). control 

%data, and c). airgun data. Each matrix is 3 by 3; row/col 1 is 

%search, 2 is creak, 3 is pause, entry 1,2 is FROM search TO 

%creak. 

ntrans_null = length(WHALE) -1; %the total number of transitions 

T_null_rand = zeros(3,3); T_ctl_rand = zeros(3,3); 

T_agun_rand = zeros(3,3); 

for i = 1:3 

forj = 1:3 

for k = 1 :ntrans_null %repeat for all observed transitions 

if WHALE(k,2) == i && WHALE(k+1,2) == j %if a state i to 

%state j transition occurrs, 

T_null_rand(i,j) = T_null_rand(i,j) + 1;%increment the 

%i j entry of T_null_rand 

if airand(k) == 0; %if the behavior began during 

%control period, 

T_ctl_rand(i,j) = T_ctl_rand(i,j) + 1; %also 

%increment the i,j entry of T_ctl_rand 

elseif ai_rand(k) == 1; %if it began during airgun 

% period, 

T_agun_rand(i,j) = T_agun_rand(i,j) + 1;%then 

%increment i,j entry of T_agun_rand 

else 

error('mismatch between agun indicator vector and... 

WHALE matrix') 

end 
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end 

end 

end 

end 

A_null_rand = T_null_rand./[sum(T_null_rand,2),sum(T_null_rand,2)... 

,sum(T_null_rand,2)]; %transition matrix as proportions 

A_ctl_rand = T_ctl_rand./[sum(T_ctl_rand,2),sum(T_ctl_rand,2))... 

sum(T_ctl_rand,2)]; %transition matrix as proportions 

A_agun_rand = T_agun_rand./[sum(T_agun_rand,2),sum(T_agun_rand,2),... 

sum(T_agun_rand,2)]; %transition matrix as proportions 

() / I'" "a 'i tin i» U U '' '' nun n U U tin ii ii ii ii ii ii n ii ii ii ii mill it it nil II tin ii nil it 11 nil mi 11 11 ii ii tin mm u it n n 
'/r~,TtTi li JlTTTiTrTiiTJTTtitTTTT11 it it it it tTTtTtTtlXilTITtilISTittitTtlJ IITtTTTiJiiTJl ttitiTiTTtTttt ttTtTtitTtitTtTtitTtTtTtTtit tt /OF' FF "r fr rf // F/ fT ff rf ff Ff FT ff rf ff rr rf rf rf ff ff rf Fr rr rf rf Fr rr rrTf FT fr rr rrrr rf fr fr fr rf ff fr rf rf rf rf fr FF Ff rf fr ff rf ff rf ff rr Ff fr fT ff ff 

%LIKELIHOOD RATIO CALCULATION 
n / a i' " u u u i * u u " mi u-u u u u u mi n n »I U U U U " " " 11 mm mi u u u mi u mi UJJ u u u U_LLJJ U U mj u 'in u u u u ^/^TtTlTiTiTtTTTtTTTiTtTttl tlTTTTTtTTTT II II TtTtTtTtTtTtTItt ttTTTt lilt 11 iiTtTtTtTTTtit TtTiTtTITt ItTtTTTtTTTtTtTtitttTtTtTtTtTiTtTt /OFT f f 11 tt It TT tt tt It f f ff ff tt tt ft Tt It it It tt Tt tt it tt tt 11 11 tt IT tT Tt tt It ff rF FT f f tt It tin tt tt tt tt IT" it f f It IT ft 11 11 It tt TT ft 11 it TT tt TT 

%Calculate the log likelihood... 

%...for all conditions together (null) 

%see previous likelihood ratio calcs for detailed annotation of the 

%following calculations 

logl_null_rand = 0; 

fori = 1:length(WHALE)-1 

j = WHALE(i,2); 

k = WHALE(i+1,2); 

p = A_null_rand(j,k); 

Pp = gampdf(WHALE(i,3),ar_nullG),br_null(j)); 

logl_null_rand = logl_null_rand + log(p) + log(Pp); 

end 

%...under the alternate hyp 

logl_alt_rand = 0; 
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for i = 1:length(WHALE)-1 

if ai_rand(i) == 0 

j=WHALE(i,2); 

k = WHALE(i+1,2); 

p = A_ctl_randQ,k); 

Pp = gampdf(WHALE(i,3),ar_ctlG),br_ctlG)); 

logl_alt_rand = logl_alt_rand + log(p) + log(Pp); 

elseif ai_rand(i) == 1 

j = WHALE(i,2); 

k = WHALE(i+1,2); 

P = A_agun_rand(j,k); 

Pp = gampdf(WHALE(i,3),ar_agun(j),br_agun(j)); 

logl_alt_rand = logl_alt_rand + log(p) + log(Pp); 

else 

error('problem with ai_rand vector') 

end 

end 

%calculate the TS for this rotation 

TS_rand(nn) = 2*(logl_alt_rand - logl_null_rand); 

logl_alt_rand_all(nn) = logl_alt_rand; 

logl_null_rand_all(nn) = logl_null_rand; 

%save parameters from the rotations 

A_null_rand_all(:,:,nn) = A_null_rand; 

A_agun_rand_all(:,:,nn) = A_agun_rand; 

A_ctl_rand_all(:,:,nn) = A_ctl_rand; 

ar_null_all(nn,:) = ar_null; 

br_null_all(nn,:) = br_null; 

ar_ctl_all(nn,:) = ar_ctl; 

br_ctl_all(nn,:) = br_ctl; 
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ar_agun_all(nn,:) = ar_agun; 

br_agun_all(nn,:) = br_agun; 

end 

0/ ********************************************************************** 
/o 

%Calculate the p-value of the test 
0/ ********************************************************************** 
/o 

pvalue = length(find(TS_rand > TS_data))/10000; 

save(['gscprotTss14_' name],'pvalue', TS_data', TS_rand', 'A_null',. 

'A_ctl', 'A_agun', 'a_null', 'b_null', 'a_ctl', 'b_ctl', 'a_agun', ... 

'b_agun', 'logLnull', logLalt', ... 

'logl_null_rand_all','logl_alt_rand_aH', 'A_null_rand_all', ... 

'A_agun_rand_all', 'A_ctl_rand_all', 'ar_null_aH', ... 

'br_null_all', 'ar_ctl_all', ,br_ctl_all', 'ar_agun_all', ... 

'br_agun_aH'); 
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Appendix C: Calculations Related to Doppler Shift Compensation by 
Porpoises 

One study measured the maximum swimming speed of harbor porpoises 

to be 4.3 m/sec, and their average speed to be 1 m/sec (0.1 - 0.2%, Otani ef a/., 

2000). Herring can attain swimming speeds of 16-24 cm/sec (Onsrud ef a/., 

2005) or 10-12 body lengths per second (for 50 mm fish, Turnpenny, 1983) with 

reported bursts of swimming at up to 1.74 m/s (http://www.fishbase.org) or 2-4.5 

m/sec (Boyar, 1961). Say that the velocity of a prey item (herring) relative to an 

echolocating porpoise is 4 m/sec. The Doppler shift (Af) of an echo returning 

from the herring will be 695 Hz (0.53% of 130 kHz). Alternately, say that the 

velocity of the prey item relative to the porpoise is about 1 m/sec (this relative 

velocity is probably a more realistic estimate of the maximum relative velocity 

that one might expect to observe in the wild). Then the Doppler shift will be 173 

Hz (0.13% of 130 kHz). 

Calculations: 

/   2v   \ (        2(4-^-)        \ 
M = ft — -    = 130.0OOH :    -_1J2£I_    = 695// : 

c — c nr.oo^ -4-2M x sec sec' 

A/ = /. (—) = 130.000//; f        *(i~ln.^ = 173// 
c — r 1500-^- -4.-2- 

Harbor porpoises are capable of discriminating frequency differences as 

small as 0.1-0.2% (Ketten, 2000) in long-duration signals, although their 

discrimination capability remains untested (and is likely less acute) for shorter 

signals like clicks. Bats (Rhinolophus ferrumequinium) lower the frequency of 

their outgoing cries to stabilize the frequency of echoes from an approaching 

target at frequency differences at least as small as 0.5% (Thomas et a/., 2004). 

It should be noted, however, that their signals are at least 500 times longer than 

those of porpoises. 
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For Doppler-compensating bats {Rhinolophus ferrumequinium), the 

smallest resolvable change in target velocity is 0.1 m/sec (Simmons, 1974). That 

velocity corresponds to a frequency difference of 40Hz or 0.05% of 83 kHz. 

Harbor porpoise frequency discrimination is comparable to that of bats of 

suborder Microchiroptera (Ketten, 2000), at least for long-duration signals. If 

porpoises were to attain the same minimum resolvable frequency shift as the 

bats mentioned above for short signals like their echolocation clicks, they would 

be able to detect velocity changes with resolution of 0.36 m/sec. (This 

comparison is highly speculative.) 

Calculations: 

Af = 130.000//: ( nJ
0HZ

WT V 83. 000//; ' 

DopplerShift = /,. 

where fe is the porpoise click center frequency, here 130 kHz, v is the velocity of 

the target relative to echolocating animal, and c is sound speed, here 1500 

m/sec. So, solving for v, 

1500— 1500 in 
0.36 

2(i^owsi + j)      4147.7 
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